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SIGNAL CONDITIONING FOR DIGITAL 
CONTROL  

DIGITAL SIGNAL PROCESSING IN CONTROL 
igital signal processing (DSP) is the manipulation of signal data contained in the form of 
discrete samples.  If the samples represent an observation from a real system, they are 
created by the conversion of a continuous-time, analog signal to the discrete-time digital 
domain.  If this is a control application, the digital samples produced by the controller are 

typically converted back to an analog, continuous-time signal driving an actuator that is part of the 
plant.  Understanding these conversion processes requires an understanding of the mathematical 
processes of sampling and aliasing, as well as that of continuous signal reconstruction from samples. 

This chapter begins with an overview of sampling theory, describing the effect of signal aliasing on the 
continuous to discrete conversion process, and defining the Nyquist Theorem and Nyquist frequency.  
A summary and brief overview of the various transforms (Fourier, z, etc.) involved in these 
developments is provided in an appendix at the end of this chapter, along with the application of the 
Discrete and Fast Fourier Transforms (DFT and FFT) in digital signal analysis.  The construction of 
ideal and realizable anti-alias filters is described with the help of several examples.  The carrying of 
signal information as discrete samples and their conversion back to a continuous-time form without 
distortion via ideal filters, and with acceptable distortion with realizable filters is described. 

 
Figure 3–1: Conversion from a continuous input signal 𝒚𝒚∗(𝒕𝒕) to discrete samples  

𝒚𝒚(𝒏𝒏) and 𝒖𝒖(𝒏𝒏), and back to a continuous control output signal 𝒖𝒖∗(𝒕𝒕) 

MATHEMATICAL MODEL OF DISCRETE-TIME SAMPLING 
This section describes the effect of sampling on the incoming signal  
𝑦𝑦(𝑡𝑡). This information will enable definition of requirements on the anti-alias filter producing 𝑦𝑦(𝑡𝑡) 
from 𝑦𝑦∗(𝑡𝑡).  Another objective of this section is the definition of the spectrum at the output of the D/A 
converter, which will enable the specification of requirements on the reconstruction filter that follows.  

In Figure 3-2, mathematical models of the A/D and D/A conversion processes are proposed.  The A/D 
is represented as a continuous time ideal sampling process and continuous-to-discrete (C/D) 
conversion.  The D/A is discrete to continuous conversion (D/C) followed by a hold function.  C/D 
conversion is the generation of a numerical value from the continuous signal captured at the instant of 
sampling.  D/C conversion is the opposite, converting from a numerical value to a signal level, an 
impulse size, that drives the system having an impulse response that holds that level for T  units of 
time.  The concept of the impulse, a mathematical abstraction that does not exist in the physical world, 
is used in generating both the mathematical description of the input and output spectral, with  
𝑦𝑦𝛿𝛿(𝑡𝑡) and 𝑢𝑢𝛿𝛿(𝑡𝑡) being streams of delta functions in time, spaced at the sample time T. 
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Figure 3–2: Mathematical modeling of sampling and discrete to continuous conversion processes 

SAMPLING THEOREM AND ALIASING 
This development of the Shannon-Nyquist Sampling Theorem and aliasing is built upon a property of 
the Fourier transform when applied to the convolution operation – convolution in the time domain 
gives rise to the multiplication of their transforms in the frequency domain.  See Appendix 3A below 
for a description of this.  The dual is also true – that multiplication of two signals in the time domain 
produces a convolution of their Fourier transforms – or to be more succinct, “Convolution in the time 
domain results in multiplication in the frequency domain”, and visa-versa, “Multiplication in the time 
domain results in convolution in the frequency domain”. 

We begin with the development of a mathematical model suitable for describing the fundamental 
operation of an analog to digital converter, with the ultimate goal of analyzing the effect of an A/D on 
a signal. 

The effect of an ideal sampler on an analog signal can be described as a momentary switch that is 
being periodically operated at the sampling rate of the A/D clock… 

 

Figure 3–3: An ideal sampler modeled as a momentary switch 

By decreasing the time the switch is held closed, until it is infinitesimally small, the action of the 
switch’s pulses can be modeled as the product of 𝑦𝑦(𝑡𝑡) with a “comb” process—an infinite series of 
Dirac delta functions, 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)… 

 

Figure 3–4: An ideal sampler modeled as the product of 𝒚𝒚(𝒕𝒕) and an infinite series of Dirace 
delta functions 

Discrete-Time 
Algorithm 

A/D D/A 𝒚𝒚(𝒕𝒕) 𝒚𝒚(𝒏𝒏) 𝒖𝒖(𝒏𝒏) 𝒖𝒖(𝒕𝒕) 

K(z) 

 

 
  1 
 
 
 T 

C/D D/C 𝒚𝒚(𝒕𝒕) 𝒚𝒚𝜹𝜹(𝒕𝒕) 𝒚𝒚(𝒏𝒏) 𝒖𝒖(𝒏𝒏) 𝒖𝒖𝜹𝜹(𝒕𝒕) 𝒖𝒖(𝒕𝒕) 
T 

𝒚𝒚(𝒕𝒕) 𝒚𝒚𝜹𝜹(𝒕𝒕) 
T 

𝒚𝒚(𝒕𝒕) 𝒚𝒚𝜹𝜹(𝒕𝒕) 
 
 T 
 
 
       t 
 



CHAPTER 3 

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License.         3-3 
     

 

 𝑦𝑦𝛿𝛿(𝑡𝑡) = 𝑦𝑦(𝑡𝑡) � 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–1) 

 𝑦𝑦𝛿𝛿(𝑡𝑡) = � 𝑦𝑦(𝑡𝑡)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

  

 𝑦𝑦𝛿𝛿(𝑡𝑡) = � 𝑦𝑦(𝑛𝑛𝑛𝑛)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

  

 𝑦𝑦𝛿𝛿(𝑡𝑡) = � 𝑦𝑦(𝑛𝑛)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–2) 

Thus, 𝑦𝑦(𝑛𝑛) in (3–2) represents the weights of the digital sample weights carried on delta function 
𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛). 

Consider the ideal sampler alone: 

 𝛿𝛿𝑇𝑇(𝑡𝑡) = � 𝑦𝑦(𝑡𝑡)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–3) 

We know from Fourier transform theory that, 

 ℱ{𝛿𝛿𝑇𝑇(𝑡𝑡)} =
1
𝑇𝑇
� 𝛿𝛿 �𝑓𝑓 −

𝑛𝑛
𝑇𝑇
�

∞

𝑛𝑛=−∞

 (3–4) 

Remember, 2𝜋𝜋𝜋𝜋 = 𝜔𝜔, therefore 𝑋𝑋(𝜔𝜔 2𝜋𝜋⁄ ) = 𝑋𝑋(𝑓𝑓).  We use 𝑋𝑋(𝑓𝑓) here because it has units of 1 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡⁄ . 

Now consider the ptoduct of 𝑦𝑦(𝑡𝑡) and 𝛿𝛿𝑇𝑇(𝑡𝑡).  Multiplication in the time domain results in convolution 
in the frequency domain, therefore, 

 𝑌𝑌𝛿𝛿(𝑓𝑓) = 𝑌𝑌(𝑓𝑓) ∗
1
𝑇𝑇
� 𝛿𝛿 �𝑓𝑓 −

𝑛𝑛
𝑇𝑇
�

∞

𝑛𝑛=−∞

 (3–5) 

Recall the “sifting” property of 𝛿𝛿(𝑓𝑓 − 𝑥𝑥) when convoluted with 𝑌𝑌(𝑓𝑓), 

 𝑌𝑌(𝑓𝑓) ∗ 𝛿𝛿(𝑓𝑓 − 𝑥𝑥) = 𝑌𝑌(𝑓𝑓 − 𝑥𝑥) (3–6) 

Thus, 

 𝑌𝑌𝛿𝛿(𝑓𝑓) =
1
𝑇𝑇
� 𝑌𝑌�𝑓𝑓 −

𝑛𝑛
𝑇𝑇
�

∞

𝑛𝑛=−∞

 (3–7) 
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If the generating Fourier Transform 𝑌𝑌(𝑓𝑓) is bandlimited, meaning that it is zero outside a specified 
bandwidth 𝐵𝐵, then if the spacing of the aliased replicas of 𝑌𝑌(𝑓𝑓) exceeds 2𝐵𝐵, there will be no overlap in 
these replicas and the summation at any 𝑓𝑓 will only involve one of the generating functions at most. 
This can be guaranteed by making the sample frequency 1 𝑇𝑇⁄  at least twice the bandwidth B. 

The Shannon – Nyquist sampling theorem – According to Wikipedia, Shannon’s version of the 
sampling theorem is as follows: 

If a function  𝑥𝑥(𝑡𝑡) contains no frequencies higher than  𝐵𝐵  hertz, it is completely 
determined by giving its ordinates at a series of points spaced 1 (2𝐵𝐵)⁄  seconds apart. 

Or, in other words… 

A bandlimited analog signal that has been sampled can be perfectly reconstructed if 
the sampling rate exceeds 2𝐵𝐵 samples per second, where 𝐵𝐵 is the highest frequency 
of the original signal, and where an infinite number of samples are provided. 

Note the word exceeds.  When, for example, the sample rate precisely equals twice the frequency of a 
pure sin wave, then an infinite length sampling process will not provide the information defining the 
amplitude and phase of the sine wave.  This is clear when examining Figure 3–5, which shows that 
sampling precisely at two times the sample frequency is insufficient. 

 

Figure 3–5: Sampling of a bandlimited pure sine wave at exactly twice the signal’s frequency 

Sampling at twice the signal’s frequency does not satisfy the Shannon-Nyquist theorem, as we see 
here.  A number of different sine waves all pass through these samples.  The sample rate must exceed 
the highest frequency in the analog signal, and the sample record must be infinite in duration. 

Nyquist frequency and time interval -- the Nyquist frequency is defined to be twice the sampled 
signal’s bandwidth, or 2𝐵𝐵, and outside the frequency range of ±𝐵𝐵 the signal’s Fourier Transform is 
zero.  The Nyquist time interval is 1 (2𝐵𝐵)⁄ . 

ANTI-ALIAS FILTERING 
The anti-alias filter is applied upstream of the sampling and digital conversion process, as shown in 
Figure 3–1.  Generally speaking, this filter should pass the signal representative of the physical 
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variable being sensed, and it should reject (i.e. attenuate) any signals out beyond ± 𝑓𝑓𝑠𝑠 2⁄  to avoid 
aliasing.  This is depicted in Figure 3–6 below. 

 

Figure 3–6: An anti-alias filter passing the sensed signal and rejecting frequencies beyond 
±𝒇𝒇𝒔𝒔 𝟐𝟐⁄ , one half the sample frequency 

The ideal anti-alias filter provides a frequency response that ideally is flat over the bandwidth of the 
sensed signal and introduces no phase shift, i.e. the phase response is 0 and therefore the signal delay 
through the filter is 0.  This filter also perfectly rejects signal energy out beyond the Nyquist frequency 
𝑓𝑓𝑠𝑠 divided by 2, this being the signal that will be aliased back into the range −𝑓𝑓𝑠𝑠 2⁄  to +𝑓𝑓𝑠𝑠 2⁄ .  The 
ideal is the brick wall filter that is perfectly flat out to ± 𝑓𝑓𝑠𝑠 2⁄ , and exactly zero for all frequencies 
outside ±𝑓𝑓𝑠𝑠 2⁄ . 

 
Figure 3–7: An ideal anti-alias filter as a brickwall filter spanning the range −𝒇𝒇𝒔𝒔 𝟐𝟐⁄  to +𝒇𝒇𝒔𝒔 𝟐𝟐⁄  

The ideal anti-alias filter is not realizable for two primary reasons—consider the impulse response of 
the brick wall filter: 
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 It is a sync function, infinite in duration and involving an infinite number of filter taps (poles), 
making it impossible to build 

 If it is to cause no delay it is anti-causal, which is also not possible 

A realizable anti-alias filter is typically a low pass filter constructed of discrete components selected to 
provide the frequency characteristics desired.  It is a causal system and is therefore realizable.  What 
would this look like on a log-log plot of magnitude and semilog plot of phase – see Figure 3–8: 

 

 
Figure 3–8: Example of a realizable anti-alias filter and “bandlimited” input signal  

A low pass filter is represented in the frequency domain (i.e. bode plot), along with the spectral plot of 
the signal magnitude.  The low pass is nominally flat over the signal bandwidth, and the phase is about 
zero.  With any real filter there will be phase loss, or negative phase angle in the region near and 
outside the passband where the magnitude rolls off.  Note that these plots are shown double sided with 
negative frequencies.  This can be somewhat confusing.  For real signals which is what we are dealing 
with, only positive frequencies apply, and we generally only deal with the positive range of 
frequencies when designing control systems.  The two-sided spectra and response apply when the 
signals of interest are complex; this is typically the case with communication systems after conversion 
from a real signal to a baseband complex signal (having a spectrum centered on zero). 

Alias Example 1:  No aliasing 
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In this example we are given a signal 𝑦𝑦(𝑡𝑡) having a Fourier transform that is zero outside the band ±𝐵𝐵 
and having the magnitude shown below.  

 

Note that this shape is symmetric about the origin.  A property of the Fourier transform of real signals -
- the transform magnitude is symmetric about 0.  The signal is multiplied in the time domain by the 
comb process, 

 𝛿𝛿𝑇𝑇(𝑡𝑡) = � 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–8) 

resulting in 

 𝑦𝑦𝛿𝛿(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)𝛿𝛿𝑇𝑇(𝑡𝑡) (3–9) 

The sampling frequency equals the bandwidth 𝐵𝐵 times 3; i.e. 𝑇𝑇 = 1 (3𝐵𝐵)⁄ .  Plot the Fourier transform 
of the continuous time signal 𝑦𝑦𝛿𝛿(𝑡𝑡). 

Solution – We know that the sampling process results in a spreading of the original signals spectrum, 
with identical replicas of that spectra appearing at integer multiples of the sampling frequency.  First 
let’s plot the original spectra shifted by ±3𝐵𝐵. 

 
Clearly when this is added to the original there is no overlap, i.e. no aliasing.  Subsequent terms in the 
series are at ±6𝐵𝐵, ±9𝐵𝐵, ±12𝐵𝐵, and so on.  

 
The amplitude of the spectrum is 1 𝑇𝑇⁄  that of the original transform’s amplitude. 

Alias Example 2:  Sampling at Less Than the Nyquist Frequency 
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We are given the same problem as that directly above except that the sample frequency is reduced to 
1.5𝐵𝐵.  Plot the Fourier transform of the continuous time signal 𝑦𝑦𝛿𝛿(𝑡𝑡). 

Solution – Begin by sketching the original signals spectrum (scaled by 1/T) in blue.  To that we add 
the signal shifted by ±1.5𝐵𝐵, ±3𝐵𝐵, ±4.5𝐵𝐵, and so on in red.  

 

There are regions of overlap; the region between 𝐵𝐵 2⁄  and 𝐵𝐵 , for example.  In those regions, the 
original spectrum and any overlapping spectral replicas will be summed together, as shown in equation 
(3–7) above.  The resulting magnitude of the superimposed transform components will be: 

 

In the overlapping region the magnitude plots shape will depend on the generating function thus it is 
plotted with a squiggle to depict that might be occurring in the overlapping region where aliasing is 
causing distortion. 

Alias Example 3:  Sinusoids at 100 and 1200 Hz, T = 1/2000 sec 

We are given a time domain signal given by: 

 𝑥𝑥(𝑡𝑡) = sin(2𝜋𝜋100𝑡𝑡) + sin(2𝜋𝜋1200𝑡𝑡) (3–10) 

which is sampled at 2000 Hz.  Process 2048 samples using an FFT and plot the spectrum from −𝑓𝑓𝑠𝑠 2⁄  
to +𝑓𝑓𝑠𝑠 2⁄ .  Decide if there was aliasing.  Where does the signal at 1200 Hz appear? 

Solution – Generate an .m file to produce the samples and generate the magnitude of the FFT: 

N = 2048;  % number of samples 
T = 1/2000; % sample frequency = 2000 Hz 
df = (2*pi/N/T) / (2*pi); 
fo = 100; 
f1 = 1200; 
  
% create samples from time domain signal 
t = (0:1:(N-1))*T; 
x = sin(2*pi*fo*t) + 0.8*sin(2*pi*f1*t); 
  
% Plot the signal and noise time domain data 
figure(1) 
stem(t,x) 
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xlabel('time (sec)') 
title('signal plus noise samples') 
axis([0 0.05 -3 3]) 
  
% Compute the FFT and find the magnitude 
X = fft(x);  
absX = abs(X); 
 
% Plot with FFT zero frequency appearing at the center of the 
spectrum 
absXs = fftshift(absX); 
fs = fftshift(f); 
figure(4) 
plot(f-(1/2/T),absXs*2/N) 
xlabel('frequency (cycles/sec)') 
title('Scaled DFT versus frequency') 
axis([-1000 1000 0 1]) 

 

 

The signal components appear at 100 and 800 Hz.  The unsampled signal at 1200 Hz produces an 
aliased signal at 800 Hz.  

Alias Example 4:  Sinusoids at 100 and 1200 Hz, T = 1/2000 sec, with a 200Hz anti-alias filter 

To the example given above add an anti-alias filter to the time-domain signal that consists of a series of 
2 first-order filters having break frequencies of 200 Hz. Repeat the generation of the sample domain 
plot and FFT. 

Solution – Generate a Simulink model representing the system.  We use Simulink because of the ease 
with which we can add the anti-alias filter.  That system is: 
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Where, 

 𝑈𝑈(𝑠𝑠) = �
𝑠𝑠

2𝜋𝜋200 + 1� �
𝑠𝑠

2𝜋𝜋200 + 1� (3–11) 

The transfer function adds the anti-alias filtering.  The zero-order hold performs the sampling and 
generation of the sample stream  𝑥𝑥(𝑛𝑛).  A total of 2048 samples are stored in the workspace array xn.   

% Plot the signal time domain data 

figure(1) 

Ts = 1/2000; 

t = 0:Ts:(length(xn)-1)*Ts; 

stem(t,xn) 

xlabel('time (sec)') 

title('signal samples') 

axis([0 0.05 -3 3]) 

 
% Compute the FFT and find the magnitude 

X = fft(xn(1:2048));  

absX = abs(X); 

 
% Plot with FFT zero frequency at the center of the spectrum 

absXs = fftshift(absX); 

df = 2000/2048; 

f = (0:2047)*df; 

absXs = fftshift(absX); 

figure(2), plot(f-(1/2/Ts),absXs*2/N) 

xlabel('frequency (cycles/sec)') 

title('Scaled DFT versus frequency') 

axis([-1000 1000 0 1]) 
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The 100 Hz signal is clearly present, and the FFT shows that the signal amplitude of the 1200 Hz 
component aliased to 800 Hz is low. 

 

 

Alias Example 5:  Alias Example 3 with 1/T increased from 2 to 100 kHz and digital filtering 

For the same input conditions as that of Alias Example 3, the sample frequency is increased to 100 
kHz.  An analog anti-alias filter is not needed.  Process these digital samples with a low pass 2nd order 
digital filter consisting of two 1st order filters in cascade.  Plot these samples over 50 msec. 

Solution – A Simulink model sampling the 100 and 1200 Hz signals at 100 kHz is constructed.  Two 
first order digital filters with poles at 200 Hz are added. 

 
The following code generates the plot:   

T = 1/100000; % sample frequency = 100 kHz 
N = 0.050/T 
  
% create samples from time domain signal 
t = (0:1:(N-1))*T; 
x = x_n(1:N); 
  
% add noise 
  
%x = x + 3*randn(size(t)); 
  
% Plot the signal and noise time domain data 
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figure(1) 
%stem(t,x) 
plot(t,x) 
xlabel('time (sec)') 
title('signal samples') 
axis([0 0.05 -0.5 0.5]) 

 

From this we see that the 200 Hz signal is clearly present and the 1200 Hz signal suppressed. Thus the 
need for anti-alias filtering is diminished with faster ADC sampling and the addition of digital 
sampling to remove unwanted high frequency interference. 

 

 
Alias Example 6:  How many stages? 

An analog sensor provides an output consisting of the true signal having a bandwidth of 1000 Hz plus 
a continuous-wave (CW) interferer at 20 kHz with an amplitude of 1 volt.  An analog anti-alias filter is 
to be constructed by cascading a series of 1st-order low pass filters each having a break frequency of 2 
kHz, and together creating a filter with unity gain in the pass band.  How many of these cascaded 
filters are needed to knock the 20khz signal down in amplitude to 0.0005 volts? 

Solution – The problem is depicted in the sketch below showing the Fourier transform of the true 
signal 𝑌𝑌(𝑓𝑓), and of the sinusoidal interferer at 20 kHz.  We only sketch these spectra for positive 
frequencies since the spectrum is symmetric about 0. 

Each first-order filter is approximately flat with unity gain out to 2000 Hz, and from 2000 to 20,000 
each will roll off by a factor of 10x (this is reviewed in Chapter 5 which covers frequency response 
concepts).  Thus, the first by itself attenuates the interferer by 10x to 0.1 volt.  
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The second provides another 10x of attenuation, bringing it to 0.01 volts, a third to 0.001 volt, and 
finally a fourth bringing it to 0.0001 volts.  Thus, a 4-stage filter is required. 

SIGNAL RECONSTRUCTION FROM DIGITAL SAMPLES 
The signal reconstruction process is depicted in Figure 3–9, with the conversion of discrete to 
continuous samples followed by an impulse response that holds the signal constant for duration T. 

 

 

Figure 3–9: Analog signal reconstruction 

The discrete-time samples u(n), weight the Dirac-Delta stream ( )T tδ  to produce 

 𝑢𝑢𝛿𝛿(𝑡𝑡) = � 𝑢𝑢(𝑛𝑛)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–12) 

The Fourier transform of this signal is like that derived above for the same model that arose from the 
sampling theorem description. Rearranging this to be in the form of a multiplication of a time domain 
signal: 

 

 
  1 
 
 
 T 

D/C 𝒖𝒖(𝒏𝒏) 𝒖𝒖𝜹𝜹(𝒕𝒕) 𝒖𝒖(𝒕𝒕) 𝒉𝒉(𝒕𝒕) 
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 𝑢𝑢𝛿𝛿(𝑡𝑡) = � 𝑢𝑢(𝑛𝑛𝑛𝑛)𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–13) 

 𝑢𝑢𝛿𝛿(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) � 𝛿𝛿(𝑡𝑡 − 𝑛𝑛𝑛𝑛)
∞

𝑛𝑛=−∞

 (3–14) 

which is a multiplication in the time domain, leading to convolution in the frequency domain, 
simplifying to: 

 𝑈𝑈𝛿𝛿(𝑓𝑓) = � 𝑈𝑈�𝑓𝑓 −
𝑛𝑛
𝑇𝑇
�

∞

𝑛𝑛=−∞

 (3–15) 

So this function, existing only as a mathematical abstraction, is the Fourier transform of 𝑢𝑢(𝑡𝑡) repeated 
at integer multiples of the sample frequency 1 𝑇𝑇⁄ .   

Passing this through the hold function ℎ(𝑡𝑡) is given by the convolution of 𝑢𝑢𝛿𝛿(𝑡𝑡) with ℎ(𝑡𝑡), which is 
equivalent to the multiplication of their respective Fourier transforms.  Since ℎ(𝑡𝑡) is a rectangular 
function with a duration of 𝑇𝑇, its transform 𝐻𝐻(𝑓𝑓) is a sync function with zero crossings at ±𝑛𝑛 𝑇𝑇⁄ .  The 
multiplication of 𝐻𝐻(𝑓𝑓), which diminishes with frequency, with the response 𝑈𝑈𝛿𝛿(𝑓𝑓), which repeats with 
period 1 𝑇𝑇⁄  for an infinite duration, results in an output signal spectrum that decays with increasing 
frequency.  This is illustrated in Figure 3–10. 
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Figure 3–10: Reconstructed signal spectrum directly out of the DAC, but before any 
reconstruction filtering 

Base signal appearing at 𝑓𝑓0  and images appearing at 𝑛𝑛𝑓𝑓𝑠𝑠 ± 𝑓𝑓0 are attenuated by the amplitude response 
of a sync function. 

Reconstruction Example 1: Spectral content 

A sample sequence 𝑢𝑢(𝑛𝑛) has the discrete-time Fourier transform depicted here.  Drawn below it is the 
frequency response of the impulse reponse, ℎ(𝑡𝑡), the hold function that holds for 1 (3𝐵𝐵)⁄ .  The 
frequency response of the output signal is sketched below. 

 

 

 
Figure 3-11 – Spectral content through various stages of the reconstruction process 
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Where, 

 𝑌𝑌𝛿𝛿(𝑓𝑓) =
1
𝑇𝑇
� 𝑌𝑌�𝑓𝑓 −

𝑛𝑛
𝑇𝑇�

∞

𝑛𝑛=−∞

 (3–16) 

 �
∙

𝐻𝐻(𝑓𝑓)
∙
� = 𝑇𝑇 �

∙
sinc(𝜋𝜋𝜋𝜋𝜋𝜋)

∙
� (3–17) 

 𝑈𝑈(𝑓𝑓) = �
∙

𝐻𝐻(𝑓𝑓)
∙
� 𝑌𝑌𝛿𝛿(𝑓𝑓) = �

∙
sinc(𝜋𝜋𝜋𝜋𝜋𝜋)

∙
� � 𝑌𝑌 �𝑓𝑓 −

𝑛𝑛
𝑇𝑇�

∞

𝑛𝑛=−∞

 (3–18) 
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APPENDIX 3A: A REVIEW OF LINEAR CONVOLUTION 
Consider first the linear system 𝑔𝑔2(𝑡𝑡) driven by signal 𝑔𝑔1(𝑡𝑡): 

 

Figure 3–11: A linear system 

Recall that 𝑦𝑦(𝑡𝑡) is the convolution of input 𝑔𝑔1(𝑡𝑡) with impulse response 𝑔𝑔2(𝑡𝑡). 

 𝑦𝑦(𝑡𝑡) = � 𝑔𝑔1(𝜏𝜏)𝑔𝑔2(𝑡𝑡 − 𝜏𝜏)
∞

−∞
𝑑𝑑𝑑𝑑 (3–19) 

Of which the Fourier transform is: 

 ℱ{𝑦𝑦(𝑡𝑡)} = 𝑌𝑌(𝜔𝜔) = � �� 𝑔𝑔1(𝜏𝜏)𝑔𝑔2(𝑡𝑡 − 𝜏𝜏)
∞

−∞
𝑑𝑑𝑑𝑑� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞
𝑑𝑑𝑑𝑑 (3–20) 

Changing variables; let 𝑡𝑡 − 𝜏𝜏 = 𝜉𝜉… 

Then  𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑,  and 
∙
𝑡𝑡 
∙
�
−∞

∞
 ⟶  

∙
𝜉𝜉 
∙
�
−∞

∞

. 

 𝑌𝑌(𝜔𝜔) = � � 𝑔𝑔1(𝜏𝜏)𝑔𝑔2(𝜉𝜉)
∞

−∞
𝑑𝑑𝑑𝑑 𝑒𝑒−𝑗𝑗𝑗𝑗(𝜉𝜉+𝜏𝜏)

∞

−∞
𝑑𝑑𝑑𝑑 (3–21) 

 𝑌𝑌(𝜔𝜔) = � � 𝑔𝑔1(𝜏𝜏)𝑔𝑔2(𝜉𝜉)
∞

−∞
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (3–22) 

 𝑌𝑌(𝜔𝜔) = � 𝑔𝑔1(𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗
∞

−∞
𝑑𝑑𝑑𝑑� 𝑔𝑔2(𝜉𝜉)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗

∞

−∞
𝑑𝑑𝑑𝑑 (3–23) 

 𝑌𝑌(𝜔𝜔) = 𝐺𝐺1(𝜔𝜔)𝐺𝐺2(𝜔𝜔) (3–24) 

Therefore, convolution in the time domains leads to multiplication in the frequency domain. 

APPENDIX 3B: TRANSFORMS FOR SPECTRAL ANALYSIS 
This appendix summarizes the five transform types that are used in the material of Chapter 3 and 
subsequent chapters.  They are the: 

 Fourier transform (FT) 
 Laplace transform (LT) 
 Discrete-time Fourier transform (DTFT) 
 z-transform (ZT) 
 Discrete Fourier transform (DFT) 

𝒈𝒈𝟐𝟐(𝒕𝒕) 𝒚𝒚(𝒕𝒕) 𝒈𝒈𝟏𝟏(𝒕𝒕) 
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Also a special form of the DFT, the Fast Fourier Transform (FFT), used extensively in digital signal 
analysis and algorithm realization, is described.   

For time domain signals the Fourier and Laplace transforms apply (see Table 3-1).  It can be shown 
that the FT is a special case of the LT, and that the LT is an extension of the FT that permits signals 
involving singularities (poles) on the imaginary axis, singularities that pose a convergence problem for 
the FT analysis.  Further information can be found in http://en.wikipedia.org/wiki/Laplace_transform.   

For sample domain (discrete-time) signals the Discrete-time Fourier transform and z-transform apply.  
Like their time domain counterparts, the DTFT is a special case of the ZT, with the ZT being an 
extension of the DTFT permitting analysis of systems involving singularities in this case on the unit 
circle, singularities posing a convergence issue for DTFT analysis.  Further information is also 
available in http://en.wikipedia.org/wiki/Z-transform.  

The DTFT is derived from the FT by its application to and operation on time domain signals that are 
sampled at the sampling time interval 𝑇𝑇 .  This sampling introduces a finite resolution in time, 
producing a sequence of samples, 𝑥𝑥(𝑛𝑛), defined over the sample indices −∞ < 𝑛𝑛 < ∞, with 𝑥𝑥(𝑛𝑛) 
containing the value of 𝑥𝑥(𝑡𝑡) at discrete times 𝑡𝑡 = 𝑛𝑛𝑛𝑛.   

Finally, we limit the number of discrete samples involved in the computation of DTFT 𝑋𝑋(𝑒𝑒𝑗𝑗Ω), to the 
range 0 ≤ 𝑛𝑛 ≤ (𝑁𝑁 − 1), giving rise to the Discrete Fourier Transform 𝑋𝑋(𝑒𝑒𝑗𝑗Ω).  Computation of the 
function 𝑋𝑋(𝑒𝑒𝑗𝑗Ω), a continuous function of frequency Ω, requires an infinite number of samples 𝑛𝑛, and 
provides therefore a function having infinitely fine (i.e. continuous) resolution.  Restricting the number 
of samples to the finite quantity 𝑁𝑁 limits the resolution to 𝑁𝑁 discrete frequencies, 

 
𝑓𝑓𝑠𝑠

2(𝑁𝑁 − 1) 𝑘𝑘 (3–25) 

Where 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 1. 

The frequency resolution, 𝑓𝑓𝑠𝑠 �2(𝑁𝑁 − 1)�⁄ , can be controlled through the choice of sample frequency 𝑓𝑓𝑠𝑠 
and sequence duration 𝑁𝑁 .  We see that the DFT represents the DTFT at the finite set of discrete 
frequencies evaluated.  The DFT is therefore the transform therefore used predominantly in digital 
signal processing.  

Table 3–1: Transform Analysis Types 

Time/Sample Span −∞ < 𝑡𝑡 < ∞ −∞ < 𝑛𝑛 < ∞ 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁 − 1 

Frequency Span −∞ < 𝑓𝑓 < ∞ −𝜋𝜋 < Ω ≤ 𝜋𝜋 0 ≤ 𝑘𝑘 ≤ 𝑁𝑁 − 1 

D
om

ai
n 

Frequency 𝑋𝑋(𝑓𝑓) 𝑋𝑋(𝑒𝑒𝑗𝑗Ω) 𝑋𝑋(𝑘𝑘) 

 
↑ 
ℱ 
↑ 

↑ 
DFDT 
↑ 

↑ 
DFT 
↑ 

Time & Sample 𝑥𝑥(𝑡𝑡) Σ𝛿𝛿(𝑡𝑡−𝑛𝑛𝑛𝑛)
�⎯⎯⎯⎯⎯� 𝑥𝑥(𝑛𝑛) 0≤𝑛𝑛≤(𝑁𝑁−1)

�⎯⎯⎯⎯⎯⎯⎯� 𝑥𝑥(𝑛𝑛) 

 
↓ 
ℒ 
↓ 

↓ 
𝒵𝒵 
↓ 

 

http://en.wikipedia.org/wiki/Laplace_transform
http://en.wikipedia.org/wiki/Z-transform
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s & z 𝑋𝑋(𝑠𝑠) 𝑋𝑋(𝑧𝑧)  
 

The Fourier Transform is defined by the transform pair: 

 𝑋𝑋(𝑓𝑓) = � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
∞

−∞
𝑑𝑑𝑑𝑑 (3–26) 

 𝑥𝑥(𝑡𝑡) = � 𝑋𝑋(𝑓𝑓)𝑒𝑒+𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
∞

−∞
𝑑𝑑𝑑𝑑 (3–27) 

where the first equation defines the transform of time domain signal 𝑥𝑥(𝑡𝑡) to a function defined over the 
range of real frequencies −∞ < 𝑓𝑓 < ∞ where 𝑓𝑓 has units of  Hertz.  The inverse transform converts 
this function of frequency back to 𝑥𝑥(𝑡𝑡).  Note that this transform pair is also often stated as follows, 
using frequency in radians/second rather than in Hz, which results in a 2π term appearing in the inverse 
transform: 

 𝑋𝑋(𝜔𝜔) = � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗
∞

−∞
𝑑𝑑𝑑𝑑 (3–28) 

 𝑥𝑥(𝑡𝑡) =
1

2𝜋𝜋
� 𝑋𝑋(𝜔𝜔)𝑒𝑒+𝑗𝑗𝑗𝑗𝑗𝑗
∞

−∞
𝑑𝑑𝑑𝑑 (3–29) 

The Laplace Transform is given by the following: 

 𝑋𝑋(𝑠𝑠) = � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑠𝑠𝑠𝑠
∞

−∞
𝑑𝑑𝑑𝑑 (3–30) 

 𝑥𝑥(𝑡𝑡) =
1

2𝜋𝜋𝜋𝜋 lim
𝛽𝛽→∞

� 𝑋𝑋(𝑠𝑠)𝑒𝑒+𝑠𝑠𝑠𝑠
𝛾𝛾+𝑗𝑗𝑗𝑗

𝛾𝛾−𝑗𝑗𝑗𝑗
𝑑𝑑𝑑𝑑 (3–31) 

Where 𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝑗𝑗 and where 𝛾𝛾 is a real number chosen with a region of convergence in mind.  One 
immediately notes the similarity of these two transforms and sees that the LT equals the FT on the 
imaginary axes where 𝑠𝑠 = 𝑗𝑗𝜔𝜔.  We will use this fact when computing the frequency response of a 
transfer function given in the Laplace domain, evaluating the LT with 𝑠𝑠 = 𝑗𝑗𝑗𝑗. 

The Discrete-Time Fourier Transform is defined by the pair: 

 𝑋𝑋(𝑒𝑒𝑗𝑗Ω) = � 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗Ω𝑛𝑛
∞

𝑛𝑛=−∞

 (3–32) 

 𝑥𝑥(𝑛𝑛) =
1

2𝜋𝜋
� 𝑋𝑋(𝑒𝑒𝑗𝑗Ω)𝑒𝑒−𝑗𝑗Ω𝑛𝑛
2𝜋𝜋

0
𝑑𝑑Ω (3–33) 
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Where the forward transform is an infinite summation over all non-zero sample 𝑥𝑥(𝑛𝑛).  We see that the 
DTFT is a periodic function of Ω with a period of 2π.  Thus it is shown as a function of 𝑒𝑒𝑗𝑗Ω as a 
reminder that this function is periodic, as 𝑒𝑒𝑗𝑗Ω is periodic.  Also, it is often represented over one period,  
−𝜋𝜋 < Ω ≤ 𝜋𝜋, where Ω has units of radians/sample.  What is the relationship between the angular 
frequency variable Ω, having units of radians/sample, and that of 𝜔𝜔 of Equation 4.1 and having a 
frequency with units of rad/sec?  This is easily determined using the sample time interval T.  The 
angular rotation of the spinning vector 𝑒𝑒𝑗𝑗Ω is equal to the angular traversed over one interval T.  Thus 
we have 

Ω = 𝜔𝜔𝜔𝜔 

and we can compute the range of continuous frequencies ω associated with the angular frequency Ω as 
follows: 

−
𝜋𝜋
𝑇𝑇 < Ω ≤

𝜋𝜋
𝑇𝑇 

An example of this is given in the body of Chapter 4. 

Next, the z-Transform: 

𝑋𝑋(𝑧𝑧) = � 𝑥𝑥(𝑛𝑛)𝑧𝑧−𝑛𝑛
∞

𝑛𝑛=−∞

 (3–34) 

𝑥𝑥(𝑛𝑛) =
1

2𝜋𝜋𝜋𝜋
�𝑋𝑋(𝑧𝑧)𝑧𝑧𝑛𝑛−1

 

𝐶𝐶
𝑑𝑑𝑑𝑑 (3–35) 

 

Which again involves an infinite summation of the sample values, multiplied by the independent 
variable  𝑧𝑧−𝑛𝑛 .  Information on the inverse transform and the basis for the contour integral can be found 
in: http://en.wikipedia.org/wiki/Z_transform.  The z-transform equals the DTFT on the unit circle 
contour where 𝑧𝑧 = 𝑒𝑒𝑗𝑗𝑗𝑗. 

Finally, the equations defining the Discrete Fourier Transform (DFT) and inverse DFT: 

𝑋𝑋(𝑘𝑘) = �𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗2𝜋𝜋
𝑛𝑛𝑛𝑛
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

 (3–36) 

𝑥𝑥(𝑛𝑛) =
1
𝑁𝑁
�𝑋𝑋(𝑘𝑘)𝑒𝑒𝑗𝑗2𝜋𝜋

𝑛𝑛𝑛𝑛
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

 (3–37) 

The similarity of this transform pair with that of the DTFT is evident.  Considering the case in which 
𝑥𝑥(𝑛𝑛) is limited in sample duration to the range 0 ≤ 𝑛𝑛 < (𝑁𝑁 − 1) , then the DFT and DTFT are equal at 
the 𝑁𝑁 discrete frequencies 2𝜋𝜋𝜋𝜋 𝑁𝑁⁄  .  Thus we can compute the DTFT at regularly spaced intervals in 
angular frequency 2𝜋𝜋 𝑁𝑁⁄  using the DFT.  This interval,  2𝜋𝜋 𝑁𝑁⁄ , is therefore the resolution (also called 
the bin spacing) of the DFT in radians/sample. 

http://en.wikipedia.org/wiki/Z_transform
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We’ll define 

ΔΩ =
2𝜋𝜋
𝑁𝑁  

The bin size in terms of the time domain frequency is  

Δ𝜔𝜔 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

=
2𝜋𝜋𝑓𝑓𝑠𝑠
𝑁𝑁  

where  Δ𝜔𝜔 has units of radians/second.  Representing this also with units of Hertz: 

Δ𝑓𝑓 =
Δ𝜔𝜔
2𝜋𝜋

=
𝑓𝑓𝑠𝑠
𝑁𝑁 

How is the DFT vector to be interpreted?  Its interpretation is provided by an examination of the 
equations directly above.  Notice that the complex exponential is a spinning complex vector moving at 
one of the discrete angular increments, ΔΩ∗𝑘𝑘, and equivalently at the discrete frequencies, ΔΩ∗𝑘𝑘.  At 
each value of 𝑘𝑘, the DFT multiplies the 𝑘𝑘th sample by the spinning complex vector: 

𝑒𝑒−𝑗𝑗ΔΩ∗𝑘𝑘𝑘𝑘 

which increments by the angle ΔΩ∗𝑘𝑘 and coherently accumulates up all of the signal energy occurring 
at that frequency, placing that into the transformed vector element 𝑋𝑋(𝑘𝑘).  That element contains a 
measure of the signal power at that bin, index 𝑘𝑘, and at frequency ΔΩ∗𝑘𝑘, that measure being the square 
root of the power. 

Finally, what is the Fast Fourier Transform (FFT) and its relationship to the DFT?  Simply put, the 
FFT is the DFT, and it is formally defined no differently; however, when the number of samples 𝑁𝑁 is a 
power of 2, then a particularly advantageous computational algorithm can be applied which 
significantly speeds up the computation of the transform vector 𝑋𝑋(𝑘𝑘) .  It is the Cooley-Tukey 
algorithm providing this computational advantage, reducing the number of computations from the 
order of 𝑁𝑁2 to 𝑁𝑁 log2 𝑁𝑁.  See http://en.wikipedia.org/wiki/Fast_Fourier_transform for further details. 

SPECTRAL ANALYSIS 
When the DFT and FFT are used for spectral analysis, a finite length of discrete-time samples 𝑥𝑥(𝑛𝑛) are 
used to represent the continuous-time signal 𝑥𝑥(𝑡𝑡) during the same time period.  We demonstrated 
above that taking the Fourier transform of the signal sampled by the ideal sampler (3–1), results in the 
generation of the discrete-time Fourier transform, and that this gives rise to a potential source of 
distortion called aliasing..  The DTFT is a continuous function of linear frequency 𝜔𝜔 , infinite in 
resolution in 𝜔𝜔.  It therefore requires an infinitely large quantity of samples 𝑥𝑥(𝑛𝑛) in its computation.  
When processing only a finite number of samples as is always the case with real data and with limited 
computation resources, only a total of 𝑁𝑁 samples are considered, the samples 𝑥𝑥(𝑛𝑛) existing over the 
interval 0 ≤ 𝑛𝑛 < (𝑁𝑁 − 1) .  The availability of a limited number of samples produces a limited 
resolution along the frequency axis of the discrete Fourier transform (DFT), limiting it to a set of 𝑁𝑁  
discrete samples 𝑋𝑋(𝑘𝑘), actually samples of the DTFT 𝑋𝑋(𝑒𝑒𝑗𝑗Ω) at 𝑁𝑁 points on the unit circle 𝑒𝑒𝑗𝑗Ω.  This 
gives rise to another type of distortion called leakage, the phenomena in which signal energy in a 
particular DFT bin contributes to the DFT values in all other bins to some degree.  This is associated 
with the finite resolution of the DFT and is illustrated by example below.  As expected, this affect is 
reduced by increasing the number of samples 𝑁𝑁 of 𝑥𝑥(𝑛𝑛), and reducing the bin size. 

FFT Example 1: Computation of bin resolution 

http://en.wikipedia.org/wiki/Fast_Fourier_transform
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Consider sample stream 𝑥𝑥(𝑛𝑛) generated by sampling a continuous time signal 𝑥𝑥(𝑛𝑛) at 1000 Hz.  A 
sequence of 1024 samples is to be processed in order to be compatible with the FFT (1024 is a factor 
of 2).  What is the frequency resolution in radians/sample, also called the bin spacing?  Express this 
same spacing in terms of the time domain frequency having units of radians/sec?  Express the later also 
in Hz. 

Solution – The number of samples is N = 1024, thus the frequency resolution is 

ΔΩ =
2𝜋𝜋
𝑁𝑁 =

2𝜋𝜋
1024 = 0.0061359 radians/sample 

The time domain frequency resolution depends on the sample time interval… 

𝑇𝑇 = 1 1000⁄ = 0.001 seconds sample⁄  

Δ𝜔𝜔 =
2𝜋𝜋
𝑁𝑁𝑁𝑁

=
0.0061359

0.001 = 6.1359 radians/second 

Converting this to cycles/sec: 

Δ𝑓𝑓 = 6.1359 
rad
sec

∙
1

2𝜋𝜋  
cycle
rad = 0.9766 Hz 

Alternatively, we can use the bin spacing formula Δ𝑓𝑓 = 𝑓𝑓𝑠𝑠 𝑁𝑁⁄  

Δ𝑓𝑓 =
1000
1024 = 0.9766 Hz 

FFT Example 2: Computation and plotting of the DFT 

Continuing the example above, 𝑥𝑥(𝑡𝑡) is a pure sinusoid with a frequency of 100 × Δ𝜔𝜔 = 97.6 Hz, 
placing the signal directly at the center of the 101st bin.  Compute the FFT of this sample stream with 
the Matlab fft() function; divide this result by 𝑁𝑁 2⁄  to scale the output to signal amplitude.  Plot the 
scaled discrete Fourier transform 2|𝑋𝑋(𝑘𝑘)| 𝑁𝑁⁄  as a function of: 

a) sample index 𝑘𝑘, 
b) sample domain bin frequency Ω, 
c) time domain bin frequency 𝑓𝑓, and 
d) time domain bin frequency 𝑓𝑓 over the range -500 to +500 Hz. 

Solution – The following Matlab .m file was created to produce the required plots.  The results are as 
follows: 

%% FFT example 2, Ch 4 -- Signal Conditioning for Digital Control 
N = 1024;  % number of samples 
T = 1/1000; % sample frequency = 1000 Hz 
df = (2*pi/N/T) / (2*pi); 
fo = 100*df; 
  
% create samples from time domain signal 
t = (0:1:(N-1))*T; 
x = sin(2*pi*fo*t); 
  
%% Compute the FFT and find the magnitude 
X = fft(x);  
absX = abs(X); 
 
plot(absX*2/N) 



CHAPTER 3 

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License.         3-23 
     

 

xlabel('sample index k') 
title('Scaled DFT versus sample index k') 
  
%% Plot as function of bin frequency 
dOmega = 2*pi/N; 
Omega = (0:(N-1))*dOmega; 
f = (0:(N-1))*df; 
 
figure(2) 
plot(Omega,absX*2/N) 
xlabel('frequency (rad/sample)') 
title('Scaled DFT versus frequency') 
 
figure(3) 
plot(f,absX*2/N) 
xlabel('frequency (cycles/sec)') 
title('Scaled DFT versus frequency') 
  
%% Plot with FFT zero frequency appearing at the center of the 
spectrum 
absXs = fftshift(absX); 
fs = fftshift(f); 
 
figure(4) 
plot(f-(1/2/T),absXs*2/N) 
xlabel('frequency (cycles/sec)') 
title('Scaled DFT versus frequency') 
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FFT Example 3: Illustration of the effects of leakage 

The carrier frequency of the sinusoid is changed to a frequency of 100 × Δ𝜔𝜔 = 97.6 Hz, placing the 
signal directly at the center between the 101st and 102nd bins.  Plot the magnitude from 75 to 125 Hz 
using a stem plot to zoom in and clearly display the leakage effect. 

Solution – In the example above, line 5 of the .m file was changed to reflect the change in frequency: 

fo = 100.5*df; 

Nothing else was changed, except the following code was added to zoom in: 

figure(5) 
stem(f-(1/2/T),absXs*2/N) 
axis([75 125 0 0.8]) 

The result, the two plots: 

 

Notice that the energy has been distributed over the bins, reducing the amplitude of the signal at bin 
101 from 1 to about 0.67, and spreading signal energy to all of the other bins.   

FFT Example 4: Identifying signal components in random noise 

Use the FFT to identify the presence and frequency of two signals hidden in Gaussian noise.  For the 
parameters of the example above, generate a sample sequence given by: 

𝑥𝑥(𝑡𝑡) = sin(2𝜋𝜋𝑓𝑓0𝑡𝑡) + 0.8 sin(2𝜋𝜋𝑓𝑓1𝑡𝑡) 

with 𝑓𝑓0 = 58.6 Hz, 𝑓𝑓1 = 195.3.6 Hz, and sampled at 𝑇𝑇 = 1000 Hz. 

To this add noise samples 𝜂𝜂(𝑛𝑛) having a standard deviation of 3 (i.e. a variance of 9): 

𝑥𝑥(𝑛𝑛) = 𝑥𝑥(𝑛𝑛) + 𝜂𝜂(𝑛𝑛) 

Plot the time domain samples and the DFT of the signal. 

Solution – We generate the samples as follows: 

%% FFT example 4, Ch 4 -- Signal Conditioning for Digital Control 
N = 1024;  % number of samples 
T = 1/1000; % sample frequency = 1000 Hz 
df = (2*pi/N/T) / (2*pi); 
fo = 60.*df; 
f1 = 200.*df; 
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% create samples from time domain signal 
t = (0:1:(N-1))*T; 
x = sin(2*pi*fo*t) + 0.8*sin(2*pi*f1*t); 
  
% add noise 
  
x = x + 3*randn(size(t)); 
  
% Plot the signal and noise time domain data 
figure(1) 
plot(t,x) 
xlabel('time (sec)') 
title('signal plus noise samples') 
axis([0 1 -15 15]) 
  
%% Compute the FFT and find the magnitude 
X = fft(x);  
absX = abs(X); 
plot(absX*2/N) 
xlabel('sample index k') 
title('Scaled DFT versus sample index k') 

 

 

HOMEWORK CHAPTER 3 
SAMPLING, ALIASING AND ANTI-ALIAS FILTERING 
Samp–3–1: A continuous-time signal 𝑣𝑣(𝑡𝑡) is sampled by an ideal sampling device at a sampling 
frequency 1 𝑇𝑇⁄ , producing the sampled signal 𝑣𝑣∗(𝑡𝑡) as shown in the model: 

 

The Fourier Transform of 𝑣𝑣(𝑡𝑡) has a magnitude plot which is zero everywhere except within the range 
−0.25 𝑇𝑇⁄  to +0.25 𝑇𝑇⁄  as shown: 
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Plot the Fourier Transform of the sampled signal from −2 𝑇𝑇⁄  to +2 𝑇𝑇⁄  clearly labeling amplitude and 
frequency axis.  Repeat for the following:   

 
 

Samp–3–2: We are given a time domain signal given by: 

𝑥𝑥(𝑡𝑡) = sin(2𝜋𝜋40𝑡𝑡) + 0.8 sin(2𝜋𝜋2400𝑡𝑡) 

which is sampled at 2000 Hz.  Plot the signal from 0 to 1.5 seconds.  Process 2048 samples using an 
FFT and plot the spectrum from −𝑓𝑓𝑠𝑠 2⁄  to +𝑓𝑓𝑠𝑠 2⁄ . Decide if there is aliasing.  Where does the signal at 
2400 Hz appear?  Add an anti-alias filter to the time-domain model.  Use a second order  filter 
consisting of two first-order filters having break frequencies of 200 Hz. Repeat the generation of the 
sample domain plot and FFT. 

SPECTRAL PLOTTING AND ANALYSIS WITH FFT, RECONSTRUCTION FILTERING  
FFT–3–1: Consider sample stream 𝑥𝑥(𝑛𝑛)  generated by sampling a continuous time signal 𝑥𝑥(𝑡𝑡)  at 
10,000 Hz.  A sequence of 2048 samples is to be processed via the FFT.  What is the frequency 
resolution (also called the bin spacing) in radians/sample, radians/second, and Hertz? 

FFT–3–2: A signal 𝑥𝑥(𝑡𝑡) of problem FFT–3–1 is a pure sinusoid with a frequency of 200∗𝜔𝜔, placing 
the signal directly at the center of the 201st bin.  Compute the FFT of this sample stream with the 
Matlab fft() function.  Plot the absolute value and scaled discrete Fourier transform 2|𝑋𝑋(𝑘𝑘)| 𝑁𝑁⁄  as a 
function of 

a) sample index 𝑘𝑘, 
b) sample domain bin frequency Ω, 
c) time domain bin frequency from 0 to 10,000 Hz, and 
d) time domain bin frequency over the range –500 to +500 Hz. 

FFT–3–3: Determine the sample frequency required in Hz to achieve a frequency resolution of 0.1 Hz 
when a 1024 sample FFT is used? 

Rec-1:  What is the purpose of the reconstruction filter on the output of a DAC? 

Rec-2:  What is the shape of the transfer function that is associated with the sample and hold function 
occurring at the output of a DAC?  Sketch the magnitude response for the case in which the sample 
time is 10 kHz. 
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