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DYNAMIC MODELING  
INTRODUCTION 

critical step in the analysis and design of a mechatronic system is the acquisition, by some means, 
of a mathematical model of the system of interest.  Most often this requires the derivation of the 
model from first principles, or the modification of an existing model.  Typically the model 
consists of a set of ordinary differential equations (ODE’s), possibly nonlinear, which are said to 

“govern” the behavior of the system, hence the name Governing Equations, or Truth Model.   It must 
sufficiently capture the system’s behavioral characteristics as to enable an accurate performance analysis and 
the identification of any performance problems that may exist in the design.    

The Design Model, on the other hand, is used for the purpose of controller design.  It needs therefore to 
capture only those characteristics of the system necessary to enable an adequate controller design.   It can be 
linear and time-invariant in order to allow application of the more tractable linear control design techniques; 
or it may be necessary in order to meet the desired performance limits, to include time dependencies and/or 
nonlinearities in the Design Model. 

There are many widely varied areas of study that are pertinent to the development of mathematical models for 
control.   The focus here is primarily on mechanical systems modeling – Newton’s laws for linear and angular 
motion, friction and other nonlinearities, gears and belt drives.  Also, briefly covered are the basics of 
modeling thermal systems.   It is not an objective of this text to provide a broad, comprehensive coverage of 
the modeling of a wide range of physical systems.   The reader can gather from other sources the information 
and data needed to create a model for their application and to that apply the model-based design techniques 
discussed herein. 

The primary topics covered in this chapter therefore include: 

 conversion of ODE’s to transfer function and state-space forms 

 mechanical system modeling 

 generation of governing equations for mechanical systems via Newton’s 2nd Law 

 mechanical actuation via gears and belts 

 nonlinearities  

It is assumed that the reader has an undergraduate background in linear systems, Laplace- and z- transforms, 
as well as familiarity with Matlab and Simulink. 

TRANSFER FUNCTION AND STATE-SPACE MODELS 
It is often the case that a dynamic model is needed in a particular form. For example, state-space form is 
preferred and best suited for use in doing a modern control type of control system type design.  In this section 
we describe methods for conversion of ODE’s to state-space or transfer function form.    This is depicted in 
Figure 2-1 below.   In the case of linear systems it is possible to convert from each of these forms to any of the 
others.   The pathways most often required of the mechatronics engineer are those depicted by the arrows.   A 
set of ODE’s is derived from first principles.   If nonlinear, it may be possible to retain those nonlinearities 
and bring them directly into the state-space model.  Or if one is interested in the frequency response 
characteristics of the system, it can be linearized, converted to transfer function form, and from that a 
frequency response can be derived.   Often in data sheets the characteristics of a sensor or actuator are 
provided in the form of a frequency response.  It then becomes necessary to work back from a magnitude and 
phase curve set to identify the transfer function generating that response, thus the arrow from FR to TF.   In 
generating a Design Model, that transfer function can be converted to its equivalent state-space form and then 
inserted into the state-space model of the overall system for which a controller is being designed. 

A 



CHAPTER 2 

 
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License.         2-2 
     

 

 

 

 

 

 

 

 

Figure 2-1 – Conversion of models to various forms:    TF – Transfer Function, SS – State Space, 
ODE – Ordinary Differential Equation, FR – Frequency Response 

 

 Conversion from ODE to TF forms – Consider the nth order ODE representing the input-output relationship 
of linear system G(s), where G(s) is the Laplace Transform of impulse response g(t): ( )( ) ( )G s L g t= . 
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The nth order ordinary differential equation in general form can be written as: 
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with n coefficients multiplying derivatives of the output y(t), and m coefficients multiplying derivatives of the 
input u(t).   The transfer function is obtained by taking the y(t) Laplace Transform of both sides with all 
pertinent initial conditions set to zero: 
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and transfer function: 
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When in the form of Eq. Error! Reference source not found. its conversion to the form of an ordinary 
differential equation Error! Reference source not found. is straightforward. 

Often the dot notation or the superscript notation is used to unclutter the ODE’s.   This notation is as follows:  

ODE 

SS TF 

FR 

g(t) y(t) u(t) 
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2 3 4 5
3 4 5

2 3 4 5, , , ,dy d y d y d y d yy y y D y D y D y
dt dt dt dt dt

= = = = = =     

It is employed in the example problems that follow.  

EXAMPLES OF CONVERSION OF ODES TO TFS: 
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Conversion from ODE and TF form to SS form – When in state variable form the system is represented not 
as a single nth order differential equation in y(t) and u(t), but as a set of n first-order, coupled equations, each 
governing the evolution of one state variable for a system again having input u(t) and output y(t).  The 
dimensions of the state vector x(t), input vector u(t), and output vector y(t) are: 

( ) 1
( ) 1
( ) 1

x t n
y t p
u t m

− ×
− ×
− ×

 

Considering initially the transfer function involving no zero, and expressing it in ODE form: 
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Reorganizing to express the highest derivative as a function of u and of all lower derivatives in y: 
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A string of (n-1) integrators is constructed in Figure 2-2 and a block diagram representation of the general 
ODE involving only poles is produced: 
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Figure 2-2 – Block diagram representation of the general nth order ODE involving no derivatives 
of u 

Assigning a state variable to the output of each integrator produces one realization of the state-space form of 
Error! Reference source not found.: 
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Expressing these in matrix form 
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State variables are not unique.   Different state variable choices can have the same input-output transfer 
function characteristics and therefore represent the same system.  It may often occur that the first three 
derivatives may be the physical variables of position, velocity, and acceleration.   Higher derivatives 
expressed in this canonical form described above are not physical variables but derivatives of the acceleration.   
It may be preferable to use physical variables when possible, particularly when some of these are outputs that 
appear in the output vector y.  

What can be done in the case in which zeros exist, and the coefficients 0mb ≠  for ( 1)m n≤ − .  In that case 
we decompose the numerator and denominator of Error! Reference source not found. as follows: 
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We have already developed the block diagram realization of the transfer function from U to X, consisting of a 
string of integrators here involving successive derivatives of x(t).    The state vector associated with this 
portion of the system would be labeled x1 through xn.     

Focusing attention on the transfer function from X to the output Y, we note that it requires summing a 
weighted sum of successive derivatives of x(t).    The output equation is therefore: 

1
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m m
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−
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which is readily constructed as shown in Figure 2-3 below. 

 
Figure 2-3 – Block diagram representation of the general nth order ODE involving both zero and 
poles, for the case in which the number of poles exceeds the number of zero by at least 1. 

The corresponding state space realization is given as: 
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Note that this form of state-space formulation is not unique but depends on a number of things, one being the 
definition of state variables as noted. Another is the numbering of the states.    

In the case of a single-input multi-output system, multiple rows in the output vector y are represented by 
additional summation chains containing the corresponding elements of  each row bkj.   In the case of multi-
input single output system it is also possible to generate the appropriate block diagram and state space 
formulation.   The reader interested in this development is referred to (Friedland: Control System Design). 



CHAPTER 2 

 
This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 
International License.         2-7 
     

 

 

MECHANICAL SYSTEM MODELING 

TRANSLATIONAL  MOTION 
This section provides a brief introduction to dynamic modeling of mechanical systems using Newton’s 
2nd Law for translational and rotational motion.   Newton’s 2nd Law for translational motion is as 
follows: 

𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛴𝛴𝛴𝛴 

where the coefficient m is the mass of the body, variable v(t) the velocity of the body, and 𝛴𝛴f  the sum 
of forces being applied to the body. 

 

Figure 2-4 – Single degree of freedom mass in translation 

The sum of all external forces acting on the body is equal to the mass times the acceleration.  In this 
diagram we are depicting a body having a single degree of freedom, i.e. motion along a straight line.  
Other basic mechanical elements are the linear spring and damper.   The force applied by a linear 
spring is governed by Hook’s law which state that the force applied by the spring is equal to the spring 
constant k times the displacement (i.e. stretching or compression) of one end of the spring relative to 
the other.  The constant k has units of force per unit distance; e.g. Newton’s per meter.  The damper 
also applies a force when the ends of the damper move relative to one another.   The damping force is 
proportional to the relative velocity of the damper’s ends, and the proportionality constant is the 
damping coefficient b.   This is also referred to as viscous damping. 

 

EXAMPLE 2-1 – TRANSLATIONAL MOTION, 2 BODY EXAMPLE 
The 4th order dynamic system shown here includes two bodies, each having only a single degree of 
freedom, motion along the axis depicted by the vector denoted with the label y.    

 

y 
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For this system (1) derived the dynamic equations of motion, (2) a state space model, (3) transfer 
functions from f  to y1 and f  to y2, and (4) the frequency response of both transfer functions. 
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Begin by sketching the free body diagrams and deriving using Newton’s 2nd law for translational 
motion the governing equations of motion:  

 

Develop the state-space formulation: 
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Derive the transfer functions: 

 

Use Matlab to compute the transfer functions numerically, and plot the bode plots.   Note that the 
convolve function [conv( A, B)] performs the polynomial multiplication of the polynomials 
represented by polynomial vectors A and B. 

% Example 2-1 
m2 = 10; 
m1 = 1; 
k = 10;  
B = 0.1; 
  
% demonimator and numerator of f to y2 
den = conv([m2 0 k], [m1 B k]) - [ 0 0 0 0 k^2]; 
num = [m1 B k]; 
  
% Frequency Response f to y1 
figure(1), bode(k, den), title('Freq Response f to y1'), grid 
  
% Frequency Response f to y2 
figure(2), bode(num, den), title('Freq Response f to y2'), grid 
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EXAMPLE 2-2 – TRANSLATIONAL MOTION, 2 BODY EXAMPLE WITH GRAVITY 
We begin by examining the case in which there is no gravity. 

 

(2.6a) 

(2.6b) 
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Now add gravity and a gravitational force to each block – M1*g and M2*g.   The ODE’s become: 

1 1 1 1 1 1 1 2 1 2 1

2 2 1 2 2 1 2 2 1 1 1 1 2( ) ( )
M y B y K y B y K y f M g
M y B B y K K y B y K y M g

+ + − − = +
+ + + + − − =

  

  
  (2.7) 

The gravity terms – M1*g and M2*g – produce a static deflection and a new equilibrium point.   To 
determine the equilibrium set all derivative terms and the force f(t) to zero in the ODE’s, as this is the 
condition when at rest at the equilibrium: 

1 1 2 1

1 2 2 1 1 2

( )
( )
K y y M g
K K y K y M g

− =
+ − =

 

Solve for the equilibrium point: 

𝑦𝑦2𝑒𝑒 =
(𝑀𝑀1 + 𝑀𝑀2)𝑔𝑔

𝐾𝐾2
 

𝑦𝑦1𝑒𝑒 =
𝑀𝑀1

𝐾𝐾1
𝑔𝑔 +

(𝑀𝑀1 +𝑀𝑀2)
𝐾𝐾2

𝑔𝑔 
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At the equilibrium the gravity forces equal the spring displacement forces in magnitude and are 
opposite in direction.   Writing the ODEs in terms of new displacement variables that are relative to the 
equilibrium: 

𝑦𝑦�1 = 𝑦𝑦1 − 𝑦𝑦1𝑒𝑒 
𝑦𝑦�2 = 𝑦𝑦2 − 𝑦𝑦2𝑒𝑒 

eliminates the gravity bias forces, resulting in the ODEs as given originally, without the gravity terms.  
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So for computing the transfer functions and frequency response we use the equations without gravity, 
and for simulation use the ODEs either with gravity or without, taking care to use the correct variables, 
the original or the displaced location variables, when defining the  

Next we’ll compute the frequency response for a particular set of parameters: 

% Example 2-2 
% Coefficients 
M2=10; 
M1=1; 
K2=10; 
K1=1; 
B2=.1; 
B1=0.01; 
  
% Compute num and den polynomials 
num = [B1 K1]; 
d1 = conv([M1 B1 K1], [M2 (B1+B2) (K1+K2)]) 
d2 = conv(num,num) 
den = d1 - [0 0 d2] 
  
% Plot bode plot -- Y2/F 
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bode(num,den), title('Y2/F') 
grid 
  
% similarly for Y1/F 
num = [M2 (B2+B1) (K2+K1)]; 
figure, bode(num,den), title('Y1/F') 
grid 
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ROTATIONAL MOTION 
Newton’s Law for rotational motion is   ∑𝑇𝑇 = 𝐽𝐽𝜃̈𝜃  – the sum of the torques acting on a body about an 
axis A-A equals the change in angular momentum of the body about that axis.  For the case of constant  
mass moment of inertia J, the time rate of change of angular momentum is that inertia multiplied by its 
angular acceleration.  We are considering a body having a single degree of freedom, having an axis of 
rotation A-A, having inertia J about that axis.   A torque τ is applied to the body and the body has 
rotated through an angle θ relative to some datum location. 

 

Figure 2-5 – Single degree of freedom mass in rotation 

Computation of torques from forces applied to the body is done by multiplying the force and the 
distance between the force and the axis A-A, using the orthogonal distance between A-A and the force 
vector. 
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EXAMPLE 2-3: ROTATIONAL SPRING-MASS SYSTEM 
Consider the dynamic system:  

 

 

 

 

 

which is free to rotate about its center through angle θ  about a frictionless pivot.   The system has 
control input torque u, and disk angular position θ, disk inertia J, disk radius – r, damping coefficient – 
β = 0, and spring rate K.    Assume that the spring force is zero when θ = 0. 

(a) Draw the free-body diagram showing all forces and torques acting on the disk (do not show forces 
acting at center pivot as they don’t apply a torque to the disk).   

(b) Derive the differential equation of motion.  
(c) Cast this equation into state-space form, i.e.: 

zCxy
BuAxx

==
+=  

clearly identifying A, B, and C in terms of constants K,  r, and J .     Use  

      1

2

x
x

θ
θ

=
=


 

(d) Take the Laplace transform of the differential equations and derive the transfer function from u to 

θ; i.e. 
)(
)(

sU
sΘ  

θ 

K 

J 
r 

u 
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Laplace transform:       2 2

( ) 1
( ) ( )

U s
s Js Krθ

=
+

 

EXAMPLE 2-4: ROTATIONAL SPRING-MASS SYSTEM, SMALL ANGULAR 
DISPLACEMENT 
In this example, a rigid body is hinged at point A and moves in a horizontal plane (no gravity). For 
small displacement, obtain governing differential equation, transfer function, state space model and 
frequency response from control input displacement u to angle θ. 
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Drawing free body diagram and applying Newton’s 2nd Law: 
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% Example 2-3 
% Coefficients 
I = 10; 
L = 0.1; 
c = 1e4; 
k1 = 2e6; 
k2 = 2e6; 
  
% Compute num and den polynomials 
num = k2*L; 
den = [ I  c*L^2  (k2+k1)] 
  
% Plot bode plot 
bode(num,den) 
grid 
 

>> roots(den) 

  -5.0000 +63.0476i 
  -5.0000 -63.0476i 
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EXAMPLE 2-5: ROTATIONAL AND TRANSLATIONAL MOTION 
A rigid body (disk) with moment of inertia J rotates around pivot point O.   A block with mass m is 
attached to the disk through a spring.   There are no gravity forces applied (i.e. the disk and block 
move horizontally and gravity is perpendicular to the plane of the paper.)  Torque T and force f are 
applied to the disk and mass, respectively.  For small displacements, obtain the governing differential 
equation and state-space model. 

 

Free Body Diagrams: 
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Dynamic Equations: 

 

 

Transfer Function: 

 

Substitute 2nd equation into 1st to eliminate y: 
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State-space Formulation: 

 

 

TO BE ADDED: 
 
System modeling 

 Nonlinearities 
 Mechanical actuation via gears and belts 
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