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CONTROL DESIGN 
INTRODUCTION 

e begin by defining one basic but very widely used classical control design technique – Proportional-
Integral-Derivative control, also called PID control.    The PID design approach presented is based on 
stability margin assessment.   Following this are the state-space design methods using pole placement 
in the design of (a) the full-state regulator and (b) the asymptotic observer.  Modern optimal control 

state-space design techniques are then introduced, beginning with a description of controllability and observability, 
and covering the tools provided by linear quadratic regulator or the LQR controller, and the Kalman filter as an 
observer.   Here the emphasis is not their derivation or the theoretical bases for these techniques – the emphasis is on 
concepts associated with their application -- how these tools provide very powerful methods in a control system 
designer’s arsenal for handling difficult design problems that involve complicated systems. The control weighting 
and “noise” spectral density matrices – design parameters adjusted in the course of generating the control and filter 
design solutions – are described.   A linear quadratic Gaussian controller is formed by the combination of the linear 
quadratic regulator and Kalman observer. Together they form a dynamic compensator, and we cover the concept of 
adding integral control called the industrial regulator to both the LQR formulation of a full-state regulator and a 
combined LQR and Kalman observer. The discretization of controllers designed using continuous-time methods, 
and the incorporation of system delays are also described. 
 
The outline of this chapter: 

 PID control 
 State-space design 

o Full-state regulator design by pole placement 
o Asymptotic (Luenberger) observer design by pole placement 
o Compensator equations 
o Separation Principle 

 Modern optimal control design 
o Linear Quadratic Regulator (LQR) 

 Controllability 
 Selection of Q & R matrices 

o Optimal Observer (Kalman Filter) 
 Observability 
 Selection of V & W matrices 

o Linear Quadratic Gaussian (LQG) control 
o Addition of Integral Control 

 Industrial Regulator 
 Miscellaneous topics 

o Discretizing a continuous-time compensator 
o Accommodating delay 

 Pade’ Approximation 

PROPORTIONAL – DERIVATIVE – INTEGRAL CONTROL 
The Proportional – Integral – Derivative (PID) controller involves 3 independent gains, KP, KI, and KD, the 
proportional, the integral, and the derivative gains, respectively.  Controller gains are selected with the goal of 
achieving specific performance objectives -- i.e. the speed of response (rise time, settling time, overshoot) which 
lead directly to dominant pole location definition.   To that end we define: 

 a natural frequency parameter ωn which is approximately equal to the controlled systems open loop 
crossover frequency.   KP is computed to approximately achieve that crossover frequency. 

W 
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 a derivative gain term to provide phase lead as needed to improve phase margin (PM), and thereby 
improve settling time and overshoot.   KD is computed to achieve the desired PM. 

 An integral gain term to increase the low frequency gain as needed to reject disturbance affects -- i.e. 
biases and/or dynamic inputs.   KI is selected to boost open-loop low frequency gain without degrading 
the crossover phase margin.   The break frequency associated with KI is selected to provide this low 
frequency gain while typically well below the crossover frequency to avoid impacting PM. 

The PID controller 1( )P D IK K s K s−+ +  can be represented in the convenient form 

 ( )( )1 1I D
K s s
s

τ τ+ +                  (6-1)  

which makes the frequency response of the PID controller clearly discernible.   It comprises an integrator at low 
frequencies, a break at frequency 1 Iτ to a region of flat response, and finally a 2nd numerator break at 1 Dτ : 

  

 

 

 

 

 

 

 

 

 

Usually the derivative break 1 Dτ  is very close to the crossover in order to provide the appropriate phase lead in 

that region.    

Expressing (1) in more general form: 

( )21 ( )I D I D
K s s
s

τ τ τ τ+ + +  

and noting that the PID controller can also be expressed as: 

2( )D P IK s K s K
s

+ +
 

we see that: 

Gain 

Phase 
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where the approximation holds because I Dτ τ>> .   From this we then have: 

( )21

1 1

1 1

I I D

I D
I

P D
I

K s s
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s

K s
s

τ τ τ
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τ

τ
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+ +

 
= + + 

 
 

= + + 
 

 

So it is possible to implement the PID controller in the convenient form on the right and thereby very easily select 
the derivative and integral time constants to place the derivative and integral breaks at desired locations. 

The steps for design of the PID controller therefore are: 

(1) Select KP to achieve the crossover frequency desired, 
(2) Set τD to provide the needed phase lead, and  
(3) Set 1/ τI to provide integral gain at the lower frequencies. 

 

PID DESIGN EXAMPLE 
Perform a PID control design for the 2rd order motor model: 
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2nd Order Motor model:  

Motor inertia 𝐽𝐽 = 1.0 𝑖𝑖𝑖𝑖 − 𝑜𝑜𝑜𝑜 − 𝑠𝑠2 
Motor Damping 𝛽𝛽 = 5 𝑚𝑚− 𝑜𝑜𝑜𝑜 − 𝑠𝑠 
Motor Torque constant  𝐾𝐾𝑇𝑇 = 1 𝑖𝑖𝑖𝑖 − 𝑜𝑜𝑜𝑜/𝑎𝑎𝑎𝑎𝑎𝑎 
 
Dynamic Equations of motion: 

𝐽𝐽𝜃̈𝜃 + 𝛽𝛽𝜃̇𝜃 = 𝐾𝐾𝑇𝑇𝑖𝑖 

Transfer function:  

𝜃𝜃(𝑠𝑠)
𝑉𝑉(𝑠𝑠)  =  

𝐾𝐾𝑇𝑇 ∕ 𝑅𝑅
(𝐽𝐽𝐽𝐽 + 𝛽𝛽)𝑠𝑠 

The state space model is: 

�𝑥𝑥1̇𝑥𝑥2̇
� = �0 1

0 −𝛽𝛽/𝐽𝐽� �
𝑥𝑥1
𝑥𝑥2�+ � 0

(𝐾𝐾𝑇𝑇/𝑅𝑅)/𝐽𝐽� 𝑢𝑢    [ ] 1

2

1 0
x

y
x
 

=  
 

 

where:  

𝑥𝑥1 = 𝜃𝜃 

𝑥𝑥2 = 𝜔𝜔 

Three solutions were developed:  Proportional control only, Proportional+Derivative, and Proportional+Integral 
+Derivative. 

%%PID controller design: 
%KiKdKpG=[(1/(s/Wi))+(s/Wb) + 1 ] * Kp * G 
%Kp is the proportional gain: 
%           It is tied to Tr=1.8/Wn 
%(s/Wb) + 1 is related to derivate term 
%           It is tied to the amount phase lead req 
%           nWb=Wn 
%1/(sWi) is related to the integral gain 
%           Wi will be placed one decade below Wb 
 
%REQUIREMENTS: 
    %(1)Tr=0.2secs 
    %(2)PM=60deg 
 
%System Parameters ************************************* 
J=1; 
B=5; 
Kt=1; 
R=1; 
 
%Gs open-loop transfer function 
s = tf('s'); 

Angle (rad) 

Angular rate (rad/sec) 
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G = (Kt/R) / [(J*s^2)+(B*s)]; 
%Break frequency Wn of open-loop transfer function 
%Wn = 0.196 
%****************************************** 
 
%Requirement 
%Tr = 0.2 , Tr=1.8/Wn 
%Desired crossover frequency 
Wn=1.8/0.2; 
%Wn = 9 rad/sec 
 
%To move crossover freq add a proportional gain of -39.5dB 
Kp=10^(39.5/20); 
 
%Adding proportional gain to plant G 
%Kp*G 
s = tf('s'); 
KpG = Kp * G; 
 
%60deg phase margin requirement 
%Note for above Kp*G the PM = 26deg = 154-180 
                    %Requirement is for PM of 60deg 
                    %Add 34 deg to Kp*Gs Bode-Phase-Profile 
 
%Derivative Term needs to add 34 deg of phase lead 
%Kp+Kds = Kp ( 1 + Kd/Kp s) = Kp ( Kd/Kp s + 1 ) 
%      With Kd/Kp = tao --> = Kp ( tao   s + 1 ) 
%      With    Wb = 1/tao-> = Kp (  s/Wb   + 1 ) 
 
%Recall from (  s/Wb   + 1 ) bode phase-profile 
%0.67Wb yields 26degs phase lead 
%With Wb = 9 for Kp*G(s) Bode phase-profile and 0.6Wb=9 
%Solve for new cross over frequency Wb 
%Wb=9/0.67 -->Wb =13.43 
Wb=9/0.67; 
 
%Now the KdKpGs transfer function 
s = tf('s'); 
KdKpG=(s/Wb + 1 ) * Kp * G;%Note new Wb 
%KdKpG bode phase-profile now has 180-117=63 phase lead which meets the 60deg PM 
required 
 
%Finally add Ki: 1/(s/W) 
%W is the frequency at which we want the 
%integral gain break frequency. 
%Set W frequency 1 decade below KdKpGs bode phase-profile crossover freq 
%W = 1 
 
s = tf('s'); 
KiKdKpG=[(1/s)+(s/Wb) + 1 ] * Kp * G; 
bode(G,'b',KpG,'r', KdKpG,'m', KiKdKpG,'k',{0.1,1000}) 



This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
License. 6-6 

    

 

title('Open-loop transfer functions') 
grid 

 
OPEN-LOOP FREQUENCY RESPONSE 
The open loop transfer functions of the controlled plant (G) for all three controllers  are shown in the following 
figure.   Note that at the crossover frequency the derivative term adds considerably to the phase margin, some of 
which is lost when adding in the integral control term.   Also note that at low frequencies the integral term causes the 
gain to grow as frequency decreases with a slope of 2. 

         
STEP RESPONSES 
Examination of the step response clearly shows the significant improvement in lessening overshoot is afforded by 
the derivative control, some of which returns with the addition of the integrator.   What is not evident yet is the 
dramatic improvement the dramatic improvement in low frequency tracking performance and disturbance rejection 
that the integral action achieves, both of which are noted below. 

CL_KpG = KpG/(1+KpG); 
CL_KdKpG = KdKpG/(1+KdKpG); 
CL_KiKdKpG = KiKdKpG/(1+KiKdKpG); 
figure 
stepplot(CL_KpG,'r',CL_KdKpG,'m',CL_KiKdKpG,'k',2) 
title('Step Responses'), grid 
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TRACKING ERROR FREQUENCY RESPONSE 
In the plot of setpoint tracking error frequency response, the derivative control reduces the ‘resonant’ peaking that 
occurs at the crossover frequency, which is also the point in frequency above which the control no longer provides 
any tracking capability.   At low frequencies the integral control action greatly improves the tracking accuracy, 
making the tracking error response significantly small there. 

e_KpG = 1/(1+KpG); 
e_KdKpG = 1/(1+KdKpG); 
e_KiKdKpG = 1/(1+KiKdKpG); 
figure 
bodemag(e_KpG,'r',e_KdKpG,'m',e_KiKdKpG,'k',{0.1,1000}) 
title('Setpoint tracking error frequency response') 
grid 
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DISTURBANCE REJECTION FREQUENCY RESPONSE 
These curves tend to peak near the crossover frequency.   At frequencies above the cross over the system naturally 
rejects disturbances as a result of its inertia.   At the lower end, the integral control action greatly reduces the 
systems response to disturbance (torque) inputs 

d_KpG = G/(1+KpG); 
d_KdKpG = G/(1+KdKpG); 
d_KiKdKpG = G/(1+KiKdKpG); 
figure 
bodemag(d_KpG,'r',d_KdKpG,'m',d_KiKdKpG,'k',{0.1,1000}) 
title('Disturbance torque input to angle frequency response') 
grid 

 

STATE-SPACE DESIGN METHODS 

FULL-STATE REGULATOR DESIGN BY POLE PLACEMENT 

OBSERVER DESIGN BY POLE PLACEMENT 

COMPENSATOR EQUATIONS 

SEPARATION PRINCIPLE 

MODERN OPTIMAL DESIGN METHODS 

CONTROLLABILITY / OBSERVABILITY 
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LINEAR QUADRATIC FULL-STATE REGULATOR – LQR 
SELECTION OF Q & R MATRICES 
ADDITION OF INTEGRAL CONTROL 
Two techniques for adding integral control action to a controller designed using the LQR method are described.   
The first available is called the Industrial Regulator and can be derived through the use of the LQR method 
described above.   When full state feedback is available it avoids the use of an observer.     The second requires a 
controller and filter, the filter being needed for generation of the integral state even if all of the other system states 
are available.    

INDUSTRIAL REGULATOR 
The Industrial Regulator [ref] is a control law that does not require an observer design – the design of the controller 
is done to produce a full state regulator using for example, the full-state LQR or pole placement solution methods.   
Integral action is obtained by feeding back the output y to a summing junction with a reference input yREF and 
sending that error through an integrator with a gain also produced by the LQR design process.    The controlled plant 
therefore has the form given below: 

 

Figure A-4 – Industrial Regulator 

The control law by definition contains integral action: 

( )1 2 ( )u G x G e t dt= − − ∫     (6-2) 

where REFyyte −=)( .  To put this control into a form that is equivalent to that of the full-state regulator problem 

(i.e. with Gxu −= ), take the derivative of u and of e: 

1 2

REF

u G x G e
e y y Cx
= − −
= − =

 

   
 

where we have assumed that yREF is constant so that it derivative is zero.   

Form an augmented state vector  









=

e
x

z


 

and define the new control uu =  . 

x  
+ 

x 

Plant 

 

 
 

x 

e y u 
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With these definitions we set up the regulator problem for the augmented state-space system with state variable 
vector z. 

u
B

e
x

C
A

e
x

z 







+
















=








=

00
0 




  

or               uBzAz +=                             (6-3) 

with     







=








=

00
0 B

B
C
A

A  

Thus we will generate controller gain matrices G1 and G2 for the Industrial Regulator controller of Figure A-4 by 
computing the LQR full-state controller gains for the augmented system given above.  In other words, synthesize a 
state feedback controller in terms of z, and then use those gain terms in the control law (A1).   That controller: 

u Gz= −  

when expressed in terms of the control signal ‘u’, appear as follows 

[ ]1 2 1 2

x
u G x G e G G

e
 

= − − = −  
 


   

[ ]1 2 1 2

x
u G x G e dt G G

e dt

 
= − − = −  

  
∫ ∫

 

A unique solution for the gain matrix G exists when the pair },{ BA  is controllable, or equivalently when the 
following conditions all hold: 

(a) {A, B} is controllable 
(b) rm ≥ , that is – number of inputs ≥   number of outputs 

(c) rn
C

BA
rank +=








0

  where r is the number of outputs 

 
INDUSTRIAL REGULATOR EXAMPLE 
Consider the helicopter system given by the following: 

 

[ ]xy

wuxx

100

02.0
0
005.0

40
0
3.6

.1-405.6-
001

0.01-00.4-

=

















−

−
+
















+
















=

 

where the state, control, and disturbance variables are:  
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• x1 – pitch rate (rad/sec),  
• x2 – pitch angle of the fuselage (radians),  
• x3 – horizontal velocity (ft/sec), 
• u – control input, rotor blade tilt angle relative to the helicopter body (radians) 
• w – head wind velocity (ft/sec) 

 
[2] Shahian, B, Hassul, M., “Control System Design using Matlab”, Prentice Hall, 1993. 

The objective is to design an Industrial Regulator using the LQR controller design technique such that the following 
design requirements are met: 

• Helicopter must transition from a zero velocity to a nominal and steady forward velocity of +100 ft/sec in 10 
seconds in order to accomplish a refueling operation.  (i.e. this is the step response); overshoot of <5 ft/sec is 
acceptable. 

 
 
 
• Less than ±5 ft/sec of deviation from the 100 ft/sec setpoint during a wind gust (headwinds) of  30 ft/sec 

following the profile: 
 

 

 

• Control input (rotor tilt) cannot exceed 15 degrees in magnitude at any time (step or disturbance responses). 
• Fuselage pitch angle should not exceed 30 degrees in magnitude at any time. 
 

The design procedure to be followed in determining the ultimate design that meets these requirements is as follows: 

1) Define the parameters of the full-state LQR problem: 
• Define a Q matrix that will drive the error signal e to zero 
• Perform several design, starting with a large R (i.e.1e10)  

 
(2) Adjust R downward until poles are in appropriate locations 

• Good pole locations are expected to be those having a magnitude of 0.2 to provide a rise time of 
approximately 9 seconds 

 

(3) Simulate each design to determine if the design constraints are met.    Start with initial conditions (0 0 0)’. 

20  22        32  35    (sec) 
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A simulation model of the helicopter and industrial regulator is constructed in Simulink.  An augmented B matrix 
consisting of B and E is generated for use in the ‘State-space’ block to accommodate both inputs, u and w.    

 

 

Figure A-5 – The State-space Block input matrices and initial conditions 

%% Helicopter Industrial Regulator Control Problem 
% System matrices: 
 
A = [ -.4   0   -.01 
      1   0    0 
      -5.6  40     -.1]; 
    
B = [6.3    0  40 ]'; 
  
C = [0    0  1 ]; 
 
E = [-0.005  0  -0.02]'; 
 
% Form the Augmented System Matrices 
Ap = [A  zeros(3,1) ; C 0 ]; 
Bp = [   B   ; 0 ]; 
Ep = [   E   ; 0 ]; 
 
% Define the LQR Weighting Matrices 
Q = [0     0     0     0 
     0     0     0     0 
     0     0     0     0 
     0     0     0     1  ]; 
R = 1e8; 
 
% Solve for control gain G 
[G,S,Eg] = lqr(Ap,Bp,Q,R) 
 
% Define the gain submatrices for use in performance simulation 
G1 = G(1:3); 
G2 = G(4); 
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Figure A-5 – Helicopter Model with Industrial Regulator Controller 

Several designs are developed and tested: 

Design Q=diag(x,x,x,x) R Eigenvalues G = (x, x, x, x) 

1 0, 0, 0, 1  
1e8 

-0.9549,-0.0627,           

-0.2279±0.6073i 
0.1539  0.1465  0.0001  0.0001 

2 0, 0, 0, 1 1e6 -0.9190,-0.5092,   

-0.2526±0.6890i 
0.2133  0.2695  0.0022  0.0010 

3 0, 0, 0, 1 1e4 -1.2252±0.5166i,         
-0.4075±1.1222i 

0.3245  0.8062  0.0180  0.0100 

4 0, 0, 0, 1 1e5 -0.93±0.29i,         
-0.32±0.86i 

0.2735  0.4656  0.0068  0.0032 

5 0, 0, 10, 1 1e5 -1.5601,-0.3115,          
-0.5455±1.1585i  

0.3127  0.6703  0.0123  0.0032 

6 0, 5e4, 3, 1 1e5 -2.665±2.6266i     
-0.1919±0.1417i 

0.7080  2.5707  0.0188   0.0032 

y

u-e

y

x
u

Wind Gust
Disturbance

Velocity 
Setpoint 
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100

Regulator
full state feedback 
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DESIGN #1 – Too slow on step response and wind gust (moved out to 60 seconds) causes excessive velocity 
disturbances.     The pitch angle (purple) is well within the 30 degree limit, and the control level is well within the 15 
degree rotor blade tilt limit (lower left).   The velocity deviation due to wind exceeds the 5 ft/sec limit as seen in the 
lower right plot. 
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Design #2 – Pitch angle reaches 40 degrees, still exceeding 30 degree limit.   Otherwise meets remaining 
requirements; but it has some undesirable overshoot in horizontal velocity. 

 

 

  



This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
License. 6-16 

    

 

Design #3 – Fuselage pitch angle exceeds 30 degrees significantly, reaching about 75 degrees during the initial 
transient.  The speed of response is very fast and the wind disturbance is acceptable. 
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Design #4 – Fuselage pitch angle better but still exceeds 30 degrees significantly, reaching about 55 degrees 
during the initial transient, down by 20 degrees.  The speed of response is very fast and the wind disturbance is 
acceptable. 
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Design #5 – This one has the better performance.  The element of the Q matrix weighting the horizontal velocity 
is added to dampen the transient response and eliminate the overshoot of the horizontal velocity.  Note that the 
fuselage pitch still exceeds the 30 degree limit as is the control less than the 15 degree tilt limit.   The wind 
disturbance is less than 5 ft/sec. 
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Design #6 – This one meets the pitch angle 30 degree limit and all other requirements.  The element of the Q 
matrix added here introduces a weight on the pitch angle which is expected to reduce pitch angle excursions.   We 
see below in the simulated results that it does.     The wind disturbance is less than 2 ft/sec. 
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OPEN-LOOP FREQUENCY RESPONSE OF THE INDUSTRIAL REGULATOR CONTROLLED PLANT 
Compute the open-loop frequency response of a plant controlled by (1) the LQR Industrial Regulator involving full-
state feedback, and then (2) the LQG Industrial Regulator with an observer providing state estimates for control. 

LQR INDUSTRIAL REGULATOR 
The equation for the augmented system is used to derive the open-loop frequency response: 

u
B

e
x

C
A

e
x

z 







+
















=








=

00
0 




  

or               uBzAz +=                             (A2) 

with     







=








=

00
0 B

B
C
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A  

u Gz= −                             (A3) 

( )1 2 ( )u G x G e t dt= − − ∫  

Thus the open-loop response can be computed using the augmented system directly: 

 

The state-space object provided within Matlab: 

sys_ol  = ( , , ,0)ss A B G  

provides a control object representing the complete plant and full-state controller.   The frequency response of 
‘sys_ol’ is that open loop response of the Industrial Regulator controlled plant.    Code to compute it with this 
method is given here: 

sys_ol = ss(Abar,Bbar,G,0); 
bode(sys_ol) 
title('Bode plots -- Open loop LQR Full-state Ind Reg controlled plant') 
grid 
 

Alternatively we can compute the frequency response of the controller alone: 

     
2

1
Gu G x Cx
s

 = − +  
 

sys_G1  = 1 1(0,0 ,0, )xnss G  

sys_G2  = 2(0, , ,0)ss C G  

u
 

u
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and then append that to the plant.   Code to compute it with this method: 

%% new method -- Compute the open loop response of the LQR Full-state Ind  
% Reg controlled plant 
G1 = G(1:2); 
G2 = G(3); 
sys_1 = ss(0,zeros(1,2),0,G1); 
sys_2 = ss(0,C,G2,0); 
sys_comp = parallel(sys_1, sys_2); 
% the compensator frequency response 
bode(sys_comp); 
title('Bode plots -- LQR Full-state Industrial Regulator Compensator') 
grid 
% concatenate the compensator with the plant 
sys_full_state_plant = ss(A, B, eye(2), zeros(2,1)); 
sys_ol = series(sys_full_state_plant, sys_comp); 
% bode plot Full-state LQR Industrial Regulator open loop respone 
bode(sys_ol) 
title('Bode plots -- Open loop Full-state LQR Industrial Regulator Controlled plant') 
grid 
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LQG INDUSTRIAL REGULATOR
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sys_1 = ss(Ae  , In , G1 ,  0)  

sys_2 = ss(0nxn , -B*G2 , In , K)  

sys_3 = ss(0 , G2 , 1 , 0)  

sys_4 = series(sys_2, sys_1) 

sys comp = parallel(sys 4, sys 3) 
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Example code that realizes the above: 

%%   Open-loop response of LQR/LQG Industrial Regulator (with observer) 
  
sys_plant = ss(A,B,C,0); 
bode(sys_plant) 
grid 
Ae = A - B*G1 - K*C; 
sys_1 = ss(Ae, eye(2), G1, 0); 
sys_2 = ss(zeros(2,2), -G2*B, eye(2), K); 
sys_3 = ss(0, G2, 1, 0); 
% concatenate sys_1 ans sys_2 
sys_4 = series(sys_2,sys_1); 
% sum sys_4 in parallel with sys_3 
sys_comp = parallel(sys_4, sys_3); 
  
% the compensator frequency response 
bode(sys_comp); 
title('Bode plots -- LQG/LQR Industrial Regulator Compensator') 
grid 
  
% concatenate the compensator with the plant 
sys_ol = series(sys_comp,sys_plant); 
% bode plot LQG/LQR Industrial Regulator open loop respone 
bode(sys_ol) 
title('Bode plots -- Open loop LQG-LQR Industrial Regulator Controlled plant') 
grid 
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INTEGRAL CONTROL BY INCORPORATION OF AN EXOGENOUS BIAS STATE IN AN LQG DESIGN 
We consider the 2nd order spring mass system governed by: 

u
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having position x1 and velocity x2.   (In this A full-state regulator naturally provides a proportional-derivative type of 
control action, with the proportional coming from the gain on position, and the derivative from the gain on velocity.   
An integral control component is inserted by adding an additional state equation 

0=b  

representing a bias term (a bias has a time derivative of zero), a bias given by the output of an integrator.   We 
append this bias and have it inject an input at the location of the control input u.   This causes the controller to 
introduce a compensating control input, i.e. the integral of the output error, to reject the effect of the bias.    The 
system block diagram with the added bias is shown below, where we’ve indicated that the bias is  

 

Figure A-1 – Augmentation of state dynamics for addition of integral control 

The augmented model is therefore: 
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The full-state control design can be obtained for this problem through the solution of the Control Algebraic Ricatti 
Equation, however a solution is guaranteed to exist only for systems that are stabilizable.  Thus the uncontrollable 
poles must be stable.  In this example as show above, the new state x3 is uncontrollable (check controllability test 
matrix).   To make it stable we add a small negative feedback term α, making: 

 


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
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



−
−=

α00
110
010

A  

This results in an inconsequential change in the system dynamics, but enables the algebraic Riccati Equation solver 
to find a solution.   For this pair {A,B} the controllability test matrix has rank 2.   However, with α= 1e-4 the control 

0=b
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algebraic Ricatti Equation has a unique solution that can be successfully derived numerically using Matlab’s lqr 
function 

 

 

which produces: 

G = 31.5229    7.9401    0.9968 

M = 

    0.2511    0.0315   -0.0000 
    0.0315    0.0079    0.0010 
   -0.0000    0.0010    5.0000 
 

E = 

  -3.9701 + 3.9826i 
  -3.9701 - 3.9826i 
  -0.0001           

 

Note that gain K(3), which multiplies the bias state, is ~1.   Thus the control acts to negate the bias, assumed to be 
know in the full-state regulator problem.   This gain does not change appreciably as the weighting matrices Q and R 
vary in such a way as to increase the speed of response, moving the complex eigenvalues to the left in the s-plane; 
however for smaller Q/R ratios (ie when increasing R) this gain will move away from 1 as the optimal solution 
becomes one that permits state regulation error in favor of conserving control action.   Try solving for the optimal 
gain K for lower values of R and note how the other gains change but this gain remains essentially at 1.    

The bias state is not a known quantity in general; if it were then we would simply add that control action to u and be 
done with it.   To generate the unknown bias state an observer is needed, and thus we develop the Optimal Observer 
to complete the development of the control law with integral control action.   In this case of the filter design, the 
state dynamics and output equations involve noise signals v(t) and w(t).: 
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%% LQR Full-State Controller with Integral Control Action 
A = [ 0    1     0;  -.1    0     1;    0     0     -1e-4] 
B = [ 0  1  0 ]' 
Q = [1     0     0;  ... 
     0     0     0;  ... 
     0     0     0  ] 
 R = .001 
 [G,M,E] = lqr(A,B,Q,R,zeros(3,1)) 
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Weighting matrices are defined which satisfy the controllability requirement on the pair {A,W1/2}.   The system 
must be controllable by the process noise w.   We set the spectral density matrix so be the diagonal matrix   W = 
diag([ 0  γ1 γ2 ]), whose square root is simply the square root of the diagonal terms.   One can easily verify that the 
pair {A,W1/2} is controllable.  Note that the pair {A,C} is observable, thus the requirements for the existence of a 
solution to the Filter Algebraic Riccati Equation (FARE) .      The following m-code, which assumes A is defined 
above: 

 

yields the solution: 

L = 

  9.8920e-002 
  1.0000e+004 
  9.8921e+002 
 

P = 

 -9.9999e-001  4.8925e-007 -9.0108e-001 
  4.8925e-007  9.0000e-001  9.7852e-003 
 -9.0108e-001  9.7852e-003  9.1092e-001 
 

E = 

 -2.8200e-011 +2.2608e+000i 
 -2.8200e-011 -2.2608e+000i 
 -9.8920e-002               

COMPENSATOR EQUATIONS 
Earlier we learned that the compensator given by the combination of the observer and full-state regulator is given 

by:                                      [ ] )()()( 1 syLLCBGAsIGsu −++−−=  

Generating the frequency response of the compensator (Figure A-2) shows that there exists an integral control action 
in the lower frequency region followed, as frequency increases by a region of phase lead as needed to stabilize the 
system.  

%% Kalman Filter Design 
 A(3,3)=0 
 W = diag([0 10 .1]); 
 V = 0.0001; 
 C = [1 0 0]; 
 [L,P,E] = lqe(A,eye(3),C,W,V,ones(3,1)) 
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ADDING TRACKING REFERENCE SIGNAL 
A tracking reference is added in order to cause the system to drive the output to a non-zero reference level, as is the 
case of a tracking servo.   In this example the addition of a tracking reference signal is fairly trivial.   A block 
diagram of the controlled system with the reference subtracted from the output is shown in Figure A-3a below, and 
in another equivalent form in (b). 

 

Figure A-3a  

 

Figure A-3b – Tracking reference signal added  

 

OPTIMAL OBSERVER (KALMAN FILTER) 
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LINEAR QUADRATIC GAUSSIAN (LQG) CONTROL 
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MISCELLANEOUS TOPICS 

DISCRETIZING A CONTINUOUS-TIME COMPENSATOR 
Consider the compensator given as a continuous-time observer and full-state regulator: 

ˆ ˆ
ˆ

Lx A x Bu Ly
u Gx
= + +
= −


 

where LA A LC= − .   Conversion to discrete-time form: 

1ˆ ˆ
ˆ

n Ld n d n d n

n n

x A x B u L y
u Gx

+ = + +
= −

 

is accomplished by assuming that over the time interval T the control u(t) and measurement y(t) are constant.   The 
matrix ALd is known to be the state-transition matrix: 

LA T
LdA e=  

Matrices Bd and Kd are given by: 

0
L

T A
dB e Bdτ τ= ∫  

0
L

T A
dL e Ldτ τ= ∫  

You can compute these matrices using Matlab: 

[ALd, Bd] = c2d(AL, B, T) 

[ALd, Ld] = c2d(AL, L, T) 

or compute them yourself as follows.   A simple way to compute approximate discrete-time matrices is through 
Euler Integration.   Taking the original equation expressed as follows: 

( ) ( )

( ) [ ]

( ) [ ]

( 1)

( 1)

ˆ ˆ ˆ( 1) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

n T

nT
n T

L
nT

L

x n T x nT x t dt

x nT A x t Bu t Ly t dt

x nT A x nT Bu nT Ly nT T

+

+

+ = +

= + + +

≈ + + +

∫

∫



 

Rewriting in simpler notation: 

( )1ˆ ˆn L n n nx I A T x BTu LTy+ = + + +  

A better approximation can be derived using infinite series representation of the state transition matrix: 
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2 2 3 31 1
2 3!

ATe I AT A T A T= + + + +   

retaining 3 or 2 terms of the series to compute the state-transition matrix: 

2 21
2Ld L LA I A T A T≈ + +  

Ld LA I A T≈ +  

Using the latter in the integrals for the control and measurement input matrices: 

( )
0

2 2

T

dB I At Bd

I T AT B

τ= +

 = ⋅ + 

∫
  

( )
0

2 2

T

dL I At Ld

I T AT L

τ= +

 = ⋅ + 

∫
 

Rewriting here in simpler notation: 

2 2 2
2

1ˆ ˆ
2 2 2n L n L n L n

T T Tx I A T A x I T A Bu I T A Ly+

     
= + + + ⋅ + + ⋅ +     
     

 

 

ACCOMMODATING SIGNAL DELAYS 
PADE’ APPROXIMATION 
INCORPORATING DELAYS IN SISO AND STATE-SPACE MODELS 
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HOMEWORK PROBLEMS 
(6-1) Is the following system controllable?   Verify by computation of the Controllability matrix and 
verification that the rank = 3 

 

 

 

 

(6-2) Design an observer for the system below using pole placement and hand calculations to place the closed 
loop poles at {-4±j4}.   Verify your solution using the Matlab place( A’, C’, p), where p are the poles of the 
observer. 

 

 

 

 

For initial conditions  

 

simulate with Simulink and plot the transient response of the system and observer for   u(t) = sin(t). 
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(6-3)    

 

 

(6-4) Industrial Regulator Design for Helicopter Control: 

–  Generate a control law for the HELO by adjusting the Q & R matrices such that the rise time is 
approximately 10 second and the pitch angle transient limit of 25 degrees max is achieved.   

–  Plot out the 4 plots as shown in the lecture. 

–  Suggestion – weight state x2, the pitch angle – Why? 

 

 

 

 

For the helicopter system given by the following: 
 

[ ]
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where the state and control variables are:  
 
x1 – pitch rate (rad/sec),  
x2 – pitch angle of the fuselage (radians),  
x3 – horizontal velocity (ft/sec), 
u – control input, rotor blade pitch angle (radians) 
 

(a) Where are the open loop poles of the system? 
 

(b) All of the state variables are available as inputs to the controller.   Design a full-state 
regulator with pole placement.  Use place (A, B, p)  to place the closed loop poles at -1, -
1.5, and -2 rad/sec.   What is the feedback gain matrix, K? 
 

(c) Develop a Simulink model of the helicopter as shown here.   Add a setpoint to the 
horizontal velocity of 100 ft/sec in the model and simulate the step response to this input.   
In other words, set the initial condition x(0) to [0 0 0] in the state-space block.   Record  
the horizontal velocity and control input using scope blocks.  Copy them to you 
document along with your Simulink model and any m-code generated. 

Q = [0     0     0     0 

     0     q
22
    0     0 

     0     0     100   0 

        0     0     0     10]; 
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