
ABSTRACT 

ON-LINE STATE AND PARAMETER ESTIMATION 

IN NONLINEAR SYSTEMS 

by 

David A. Haessig 

On-line, simultaneous state and parameters estimation in deterministic, nonlinear 

dynamic systems of known structure is the problem considered.   Available methods are 

few and fall short of user needs in that they are difficult to apply, their applicability is 

restricted to limited classes of systems, and for some, conditions guaranteeing their 

convergence don’t exist.    

The new methods developed herein are placed into two categories: those that involve 

the use of Riccati equations, and those that do not.   Two of the new methods do not use 

Riccati equations, and each is considered to be a different extension of Friedland’s 

parameter observer for nonlinear systems with full state availability to the case of partial 

state availability.   One is essentially a reduced-order variant of a state and parameter 

estimator developed by Raghavan.   The other is developed by the direct extension of 

Friedland’s parameter observer to the case of partial state availability.   Both are shown to 

be globally asymptotically stable for nonlinear systems affine in the unknown parameters 

and involving nonlinearities that depend on known quantities, a class restriction also true 

of existing state and parameter estimation methods.  The two new methods offer, 

however, the advantages of improved computational efficiency and the potential for 

superior transient performance, which is demonstrated in a simulation example.  

Of the new methods that do involve a Riccati equation, there are three.   The first is 

the separate-bias form of the reduced-order Kalman filter.  The scope of this filter is 

somewhat broader than the others developed herein in that it is an optimal filter for 



                 

         

linear, stochastic systems involving noise-free observations.  To apply this filter to the 

joint state and parameter estimation problem, one interprets the unknown parameters as 

constant biases.    For the system class defined above, the method is globally 

asymptotically stable.  

The second Riccati equation based method is derived by the application of an 

existing method, the State Dependent Algebraic Riccati Equation (SDARE) filtering 

method, to the problem of state and parameter estimation.   It is shown to work well in 

several nonlinear examples involving a few unknown parameters; however, as the 

number of parameters increases, the method’s applicability is diminished due to an 

apparent loss of observability within the filter which hinders the generation of filter gains.  

The third is a new filtering method which uses a State Dependent Differential 

Riccati Equation (SDDRE) for the generation of filter gains, and through its use, avoids 

the “observability” shortcomings of the SDARE method.    This filter is similar to the 

Extended Kalman Filter (EKF), and is compared to the EKF with regard to stability 

through a Lyapunov analysis, and with regard to performance in a 4
th

 order stepper motor 

simulation involving 5 unknown parameters.  For the very broad class of systems that are 

bilinear in the state and unknown parameters, and potentially involving products of 

unmeasured states and unknown parameters, the EKF is shown to possess a semi-global 

region of asymptotic stability, given the assumption of observability and controllability 

along estimated trajectories.   The stability of the new SDDRE filter is discussed. 
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CHAPTER 1 

1 INTRODUCTION   1 

In the study of control system design theory, particularly classical control theory, it is 

typically assumed that the designer has perfect knowledge of the system to be controlled.  

Not only does the designer know the system structure, i.e. the exact dynamic equations 

governing the evolution of the controlled state, but he or she also knows the system 

parameters precisely.    This, however, is generally not true.    In most physical systems, 

the characteristics of the system change for various reasons:   parameters (e.g. friction) 

may change with temperature or over the life of the unit, rapid shifts in system dynamics 

can occur due to a catastrophic change of some sort,  resonant frequencies can shift, and 

so on.   As a result, a design that is stable and effective at one condition can become 

unstable and ineffective at another.    This is also true of much of the modern control 

methods developed since the 1960’s
1
.   Thus, many of the powerful classical and modern

design techniques that assume knowledge of the dynamic model can become ineffective 

in the face of parameter uncertainty.    Parameter estimation techniques provide a way to 

address this problem. 

On-line parameter estimation techniques attempt to extract, in real time, parameter 

information from a dynamic system providing full-state availability, i.e. all of the state 

variables are measured with sufficient accuracy so that state estimation is not required.   

The best estimate of system parameters can then be used in a parameter dependent 

controller to adapt to parameter changes.   In many applications, however, the entire state 

1
 A great deal of effort since the early 80’s, however, has been directed at the design of stable controllers 

for systems with quantifiable uncertainty. 
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of the underlying dynamic system is not measured directly, and as a result it is necessary 

to estimate the unmeasured state variables as well as the unknown parameters.    In 

comparison to the problem of parameter estimation alone, this is a significantly more 

difficult problem because it is inherently nonlinear.   Even the simplest expression 

involving an unknown parameter  and an unknown state variable x, their product x , is 

nonlinear.  Suitable techniques have therefore been slow in coming. 

Nevertheless, a wide range of technologies exist that could benefit by the availability 

of stable state and parameters estimation methods.    Applications can be noted in the 

literature in the areas of electronic systems, communication systems, guidance and 

navigation systems, chemical systems, mechanical and robotic systems, biomedical 

systems, financial systems, etc.   Consider the following example which appeared in a 

Special Issue on Medicine in the IEEE Transactions on Automatic Control [44].   The

application is a ventricular assist device that works with an impaired heart to meet the 

cardiovascular demands of the patient.   A dynamic model of blood flow through the 

heart is used to enable the implementation of an effective control strategy.   The dynamic 

model presented,  

)(12 AS ppff   (flow) (1.1) 

)(43 RSS ppfp   (peripheral pressure) (1.2) 

)(5 RSR ppp  (left arterial pressure) (1.3) 

involves three states and 5 uncertain hemodynamic parameters.   (The variable pA is an 

input.)   Two of the states, f and pR , can be measured, the other pS cannot and both 

measurements include noise.   Thus, this problem involves uncertain parameters 
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multiplying unmeasured state variables that require estimation.   In [44] the authors 

employ an Extended Kalman Filter (EKF) to estimate quite effectively both the state and 

parameter vectors, online.   There is, however, no known guarantee of stability with the 

EKF, which can be a cause of concern in some cases, especially in this one where a 

patient’s health could be affected.   A filter similar in complexity that possesses a property 

of asymptotic stability would therefore be greatly advantageous.   The stability of the EKF 

and of the new filter with bilinear systems of this type is examined herein, and a proof of 

stability for the EKF is given.    A simulation example of a similar system, a 4
th

 order 

stepper motor with 5 unknown parameters, is examined in Chapter 5. 

1.1 Motivation 

Perhaps the most important general application of the type of method developed in this 

thesis is that of the adaptive controller.   In a controller designed using the Indirect 

approach, the control law explicitly contains an "Estimation" section and a “Control” 

section (see Figure 1.1).   The “Estimation” section performs the simultaneous estimation 

of the unknown parameters  and the state x.   The "Control" section (to the right of the 

line) then use these estimates as if they were true.  Thus, both the “Controller Design” and 

“Controller” blocks contain algorithms designed under the assumption that the state and 

parameter vectors are known.  (This idea is referred to as the “Certainty Equivalence 

Principle” [2].)   As a result, the Estimation and Control sections of an Indirect Adaptive 

Controller can be defined independently, and then these separate parts can be brought 
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together to create the complete adaptive control law.   The estimation methods developed 

in the present work can be applied in this type of adaptive control system design. 

Figure 1.1  Indirect Adaptive Control Showing Simultaneous State And Parameter 

Estimation On Left 

1.2 Problem Definition and System Class 

This section introduces the notation necessary for the mathematical definition of the 

problem to be addressed, and it gives a precise statement of the classes of systems to be 

considered.    In all cases it is assumed that the structure of the system is known, and that 

a mathematical model of the actual system under study is available.   What is unknown 

are the initial state of the system and specific parameter values. 

An uncertain nonlinear continuous-time dynamic system in most general form can be 

represented: 

)()),(),(),(()(

)()),(),(),(()(

tvtttutxhty

twtttutxftx








(1.4) 

where f() and h() are nonlinear functions, 

Parameter 

Estimator 

State 

Estimator 

Controller 

Design 

 Controller 

Estimator Controller 

u y (Nonlinear)

Plant


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

are the state, unknown parameters, known input, and measurement vectors, respectively;  

t is time.   This general nonlinear structure is considered by most investigators to be too 

general for the development of systematic analysis and synthesis techniques.  Therefore, 

we define the following three restricted system classes, all involving uncertain 

parameters, and use these definitions to clearly identify the contribution that has been 

made by each of the new methods developed in the present work.  They will be called 

System Class A, B, and C, and will be ranked in order of increasing generality.   In other 

words, System Class B includes System Class A but not System Class C.    

System Class B:    System Class B is given by:   

)()()(

)()()()()()()(

txtCty

ttEtutBtxtAtx



 
(1.5) 

Measurement and process noise are assumed to be zero.   The matrices A(t), B(t), E(t) and 

C(t) may be time-varying, but are known.  Also, it should be recognized that E(t), a 

known matrix function of time, can contain nonlinear functions that depend on known 
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quantities y(t) and u(t);  i.e. E(t) = E(u(t), y(t), t). Thus, System Class B can also 

encompass nonlinear systems represented as:  

)()()(

),,()(),,,()()()()()(

txtCty

uytgtuytEtutBtxtAtx



 
(1.6) 

Furthermore, the same can also be true of matrices A(t), B(t) and C(t). 

When working with reduced-order observers, it is convenient to arrange the state 

variables of (1.6) into two groups, the first m that are directly measured and the 

remaining n-m that are unmeasured.   This may require a linear state transformation to 

eliminate C(t)  in the measurement equation.  System B can then be represented using the 

following partitioned state equations:  

)()(

),,()(),,()()()()()()()(

),,()(),,()()()()()()()(

1

2222221212

1112121111

txty

uytgtuytEtutBtxtAtxtAtx

uytgtuytEtutBtxtAtxtAtx















(1.7) 

()E

System Class A: System Class A shall be identical to System Class B, equation (1.7), 

with the exception that submatrices A12 and A22 shall be constant rather than functions of 

time. 

System Class C:  System Class C shall be similar to Class B with an important exception, 

the nonlinear matrix E() shall be allowed to depend on the entire state, and the 

unmeasured elements of  x that appear in E() shall appear linearly, such that  is 

bilinear in the unmeasured states and unknown parameters: 

)()()(

),,()(),,()()()()()(

txtCty

uytgtuxtEtutBtxtAtx



 
(1.8) 
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1.3  Overview of Existing Methods 

One might expect that any of the available techniques for estimating the state of a 

nonlinear process could potentially be applied to the problem of state and parameter 

estimation.  Surveys of existing continuous-time nonlinear observation methods are 

found in [30] and [42].    In general, however, the joint state and parameter estimation

problem falls outside the scope of most nonlinear observation techniques. The difficulty 

most often involves the poles at the origin contributed by parameter states.    To illustrate 

this, we consider the following nonlinear system, 

Cxy

tuxftuygAxx



 ),,(),,(

which will involve a nonlinearity ),,( xf  that is globally Lipschitz in x with a Lipschitz 

constant ; i.e., xxtuxftuxf ˆ),,ˆ(),,(     for all  tu m , .   For this system, 

Raghavan [36] proposes the observer:

 x̂    Ax̂   g(y,u,t)   f (x̂,u,t)   L(y   Cx̂)

with the observer gain 2/CPL  , requiring the solution of the Algebraic Riccati 

Equation (ARE) 

0)
1

( 2  IIPCCIPAPAP 




 for some small scalar , to be determined such that the above is solvable.   However, it 

will not be possible to solve this ARE unless the matrix A is Hurwitz.    With parameter 

estimation, this requirement is violated because of the pole contributed at the origin by 

each unknown parameter.   As a result, Raghavan’s method fails when applied to 

parameter estimation.   In fact, most nonlinear observations techniques when applied to 

.
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the joint state and parameter estimation problem, encounter the same difficulty.   Those 

that can be applied successfully to this problem have most likely been identified as such 

in the literature.   (Note that the Raghavan observer described in Chapter 3 is another 

method developed specifically for state and parameter estimation.) 

Most of the contributions made to the body of theory that specifically address the 

joint state and parameter estimation problem have involved System Class B, i.e. 

nonlinear systems representable with time-varying linear models.    These methods are 

listed below in Table 1.1 and will be discussed in some detail in Section 3.2.   They 

include the full-order Kalman filter, the Bastion and Givers filter, the Narandra and 

Annaswamy filter, and the Raghavan filter.   As you will note, these methods apply only 

to System Class B, with two applicable only to single-input single-output systems. 

Table 1.1  Existing Methods for Simultaneous State and Parameter Estimation 

Method Name System 

Class 

Filter Order Comment 

Kalman Filter 

(full-order)   

B Applicable to MIMO systems, easy to 

implement, good design weights 

sometimes elusive 

Bastin & Gevers B pn 2 SISO systems only 

Narandra & 

Annaswamy 

A pn 12 SISO only; lowest order, 

cumbersome transformation required 

Raghavan A pnnp  MIMO system, application of method 

straightforward 

The problem of simultaneous state and parameter estimation in linear systems was 

solved with the advent of the Kalman filter, although this fact was not initially 
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recognized.   Friedland demonstrates the use of the Kalman filter for parameter and state 

estimation in describing its use for the calibration of an inertial system in [14].   He

further clarifies the suitability of the Kalman filter for parameter estimation by his 

development of the Separate-bias Kalman filter in [11], where the Kalman filter is used

for bias estimation, a problem that again falls into System Class B.   Bias estimation is 

described in several other references, including an alternative derivation given in [21],

and also later for time-varying bias in [22], [20] and [1].

Another investigator, Rusnak, who has worked with the Kalman filter for parameter 

and state estimation, examines in [39] the conditions necessary for observability in

single-input single-output (SISO) linear systems.  His primary conclusion is that 

persistent excitation is necessary to guarantee observability and stability.   He extends his 

analysis to multi-input multi-output systems using non-minimal realizations of the plant 

in [40].

A few continuous-time methods have been developed in recent years for the on-line 

estimation of parameters only, in nonlinear dynamic systems in which the entire state 

vector is available.  These are the method of Narendra and Kudva [33] and the method of

Friedland [17].   Both are described in detail in Section 3.1.

The problem of state and parameter estimation in nonlinear systems that include 

System Class C has been addressed by Caglayan, et.al. in [6], who develop the extended

form of the Separate-Bias Kalman filter for nonlinear systems, i.e. the Separate-Bias 

Extended Kalman Filter (EKF).  However, like the standard EKF, no conditions for the 

stability of this filter are given, and so this method is not discussed in Chapter 3. 
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Another continuous-time method applicable to this problem has been developed by 

Cho and Rajamani in [7] where an adaptive observer is provided which possesses

guaranteed converge properties for a special class of systems involving Lipschitz 

bounded nonlinearities.   Because of the relative newness of this work, it has not been 

included in the descriptions given in Chapter 3. 

1.4 Research Objectives 

This effort has focused on the problem of simultaneous state and parameter estimation in 

deterministic dynamic systems of known structure.   The objectives of the effort were: 

 to develop methods providing improved computationally efficiency and

stability over existing methods

 to develop methods which can be applied to a wider class of systems than

those covered by existing methods

 to identify and prove conditions for the asymptotic stability of the new

methods

1.5 Contributions of Thesis 

This thesis contributes five new methods for the online joint estimation of parameters and 

the state variables in dynamic systems.   These new methods are separated into two 

groups: (1) those that involve Riccati equations, and (2) those that do not.  All five 



11 

methods are described briefly below and are listed in Table 1.2 along with some pertinent 

data useful for their comparison. 

(1) and (2)  Nonlinear Observers One and Two:  These methods are those that do

not involve Riccati equations.    Both possess some similarity to Friedland’s parameter 

estimator [17], and both extend Friedland’s estimator, which assumes full state

availability, to the case of partial state availability.   One is a reduced-order variant of 

Raghavan’s full-order nonlinear state and parameter observer given in [36].   The global

stability of this new method is proven for System Class B.   Although it does not involve 

a Riccati equation, it does involve an auxiliary matrix differential equation.   

Nevertheless, this new filter has been found to be easier to apply than the Riccati 

equation based methods in that it does not require excessive tuning to yield acceptable 

results.  This is demonstrated in a simulation example.  In addition, it offer the 

advantage of reduced computational loading over some existing methods, the order of 

the filter being reduced by the number of measured states. 

The second non-Riccati based method is one that is developed by directly extending 

Friedland’s parameter estimator [17] to the case of partial state feedback.   It does not

involve any type of matrix differential equation.   Consequently, of the available 

methods, new and existing, it is the least demanding computationally.   Its stability is 

guaranteed when applied to System Class A.   The method requires that the user find 

nonlinear functions that have application specific Jacobian matrices, and it is often

difficult to find these functions, particularly as system order increases.
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(3) Separate-Bias Reduced-Order Kalman Filter:  The first of the three Riccati

equation based techniques developed herein is this Separate-Bias Reduced-Order Kalman 

filter.   In 1969, Friedland developed the original separate-bias Kalman filter for 

stochastic systems involving constant and unknown bias and non-zero measurement noise 

[11].   In this present work, the limiting form of the separate-bias Kalman filter for 

vanishing measurement noise is derived.   Several key features of the reduced-order filter 

are worth noting.   First, it is the optimal filter for the conditions defined, and as such, the 

global stability of this new filter is guaranteed.   Secondly, it has a desirable two-stage 

structure; the parameters and states are estimated in separate uncoupled stages, which 

permit the use of two separate parallel processors if desired or if processing power is 

limited.   In addition, it is convenient to use, in that many physical systems possess this 

structure naturally.   Thirdly, like the full-order Separate-bias Kalman filter, this reduced-

order Separate-bias filter replaces computations involving large matrices with 

computations involving smaller matrices, thereby improving numerical stability and in 

some cases computational efficiency.  

(4) SDARE State and Parameter Estimator:  The State Dependent Algebraic 

Riccati  Equation (SDARE) filtering technique is applied to the problem of state and 

parameter estimation and shown to work well in a number of simple examples including 

some from System Class C.   However, it is found to be less than well suited for state and 

parameter estimation as the number of unknown parameters increases beyond 2 or 3.   

This is due to the lack of observability in the pair [A(x),C(x)] that is exacerbated as the 

number of unknown parameters is increased. 
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(5) A General Nonlinear Filtering Method: A new nonlinear filtering technique

that applies to general nonlinear systems is proposed.   It is shown to avoid the 

observability shortcomings of the SDARE filtering method through the use of a State 

Dependent Differential Riccati  Equation (SDDRE).   This filter is similar to and 

compared to the Extended Kalman filter (EKF) herein.    For bilinear systems of System 

Class C, the stability of both the EKF and the new filtering method are examined.  The 

semi-global asymptotic stability of the EKF is proven under mild assumptions. 
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Table 1.2  New Methods for Simultaneous State and Parameter Estimation* 

Method Name 

System 

Class 

Filter Order Comment 

Nonlinear 

Reduced-Order 

Observer #1 

B n m p  (n m) p Application straightforward 

and applicability guaranteed 

Nonlinear 

Reduced-Order 

Observer #2 

A n m p Applicability not guaranteed 

and sometime difficult 

Separate-Bias 

Reduced-Order 

Kalman Filter 

B 
(n m  p  3)

2

n m  p Good design weights 

sometimes elusive 

SDARE Filter C 
(n  p  3)

2

n  p Applicable to general 

nonlinear systems; linear 

“observability” problems 

occur with more than a few 

parameters 

SDDRE Filter C 
(n  p  3)

2

n  p Applicable to general 

nonlinear systems

*(Note that all are applicable to MIMO Systems) 
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CHAPTER 2 

2 BACKGROUND    2 

This chapter contains the background material needed for the development of the new 

filtering methods presented in Chapter 4.   A number of somewhat disconnected topics 

are covered.   General stability and Lyapunov stability theory are covered in Sections 2.1 

and 2.1.1.   A stability proof for time-varying systems that possess a form of symmetry 

common to many filtering techniques is covered in Section 2.1.2.    Observability, which 

is always a required condition for stability, is discussed in Section 2.1.3.    Two existing 

filtering techniques, the Separate-bias [11] and Reduced-order Kalman filters [15], are

presented in Sections 2.2 and 2.3, respectively, as background for the new filter 

developed in Section 4, the Separate-bias Reduced-order Kalman Filter [19].   Another

fairly new method, State Dependent Algebraic Riccati Equation (SDARE) filter [32] is

described in Section 2.4 and applied to the problem of state and parameter estimation in 

Section 4.3.    

2.1 Stability 

Perhaps the most important property that any filtering algorithm can possess is that of 

asymptotic stability.   Simply put, a filter that is asymptotically stable works.   If 

conditions on, for example, the system structure or input signal content, can be identified 

which guarantee the stable operation of the filter, then the filter can be used in those 

applications with assurance that it will work.   This section contains a review, therefore, 
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of stability theory.  In particular it covers the Lyapunov stability theorems that are used to 

prove the asymptotic stability of the new filtering methods presented herein. 

Stability theory enables the user to draw conclusions about the stability of a system 

without deriving solution trajectories either analytically or numerically.   This is often 

quite important because in most practical applications it is often difficult, if not 

impossible, to analytically derive solution trajectories, and it is typically not possible to 

probe and test, via simulation, all possible conditions that could affect the solution.  An 

unstable case could be missed and a stability assessment of the system based on 

simulation could be incorrect.  

Stability theory in general falls into two areas: 

 Input-Output Stability

 Equilibrium Stability

Input-output stability assesses whether a particular class of inputs (usually magnitude 

bounded) will produce a bounded (i.e. stable) output.    Equilibrium stability is concerned 

with the behavior of a dynamic system near or around an equilibrium point.   Although 

our focus is on the latter, the control input u will be included in our evaluation of 

stability.   As in most filtering problems, the control is assumed to be a known input 

which in many cases must  be present to persistently excite the system, in order for all of 

the states to be observable. 

The type of equilibrium stability that a system possesses can fall into a number of 

different categories.   An equilibrium is said to be stable if all trajectories starting nearby 

remain nearby;  it is unstable otherwise.  It is called asymptotically stable if it is not only 

stable but also if all trajectories tend to the equilibrium as time approaches infinity.   It is 
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uniformly stable, or uniformly asymptotically stable if the character of the stable behavior 

(i.e. convergence speed) does not depend on the initial time.   It is exponentially stable if 

an exponential upper bound can be applied to the norm of the convergent error state, as is 

true in stable linear systems.    

There are also different terms used to define the size of the region over which the 

stability property applies.   A region of attraction is defined to be a region of the state 

space within which the state trajectories are guaranteed to be stable and converging 

asymptotically to the equilibrium contained therein.   A system is globally stable if the 

region of attraction is shown to be the entire state space.    It is semi-globally stable if the 

region of attraction containing the equilibrium is large (i.e. not infinitesimal), but not the 

entire state space.  A system is locally stable if the stability characteristics are assessed 

using a dynamic model obtained by linearization (of a nonlinear model).   Local stability 

conclusions hold only within an infinitesimal region containing the equilibrium, where it 

can be assured that the linear terms dominate system behavior. 

In the sections that immediately follow, existing theory on the stability of nonlinear 

dynamic systems is presented.   Only that part of existing stability theory which is 

subsequently used herein is covered. 

2.1.1 Lyaponov Stability 

One of the most important contributions to the body of existing stability theory occurred 

about a century ago, made by the Russian mathematician, A.M.Lyapunov [24].

Lyapunov's method has received considerable use because if its applicability to nonlinear 

systems, and because it does not require the analytical derivation of solution trajectories.   

A scalar continuously differentiable function V(x) is 
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postulated, defined in a domain nR  containing the origin x = 0 (i.e. the equilibrium), 

where n is the number of state variables.   This function V(x) is said to be positive definite 

if V(0)=0 and V(x)>0 for all 0x .   It is only positive semi-definite if 0)( xV  for all x, 

and it is said to be negative semi-definite (definite) if )(xV  is positive semi-definite 

(definite).   Stability is assessed by examining the time rate of change of this positive 

definite function along solution trajectories as governed by the differential equations 

governing the system under study.    If a proposed function can be found whose first 

derivative is always negative except at the origin, then asymptotic stability is assured.   

This is stated formally in the following theorem, where we consider the n
th

 order, time-

varying dynamic system, 

),( txfx  (2.1) 

where 0),0( tf . 

Theorem 2-1 (Asymptotic Stability)  For the system (2.1), if there exists a scalar 

function V(x,t) with continuous )( xV   and )( tV  , such that 

(a) )(),()(0
22

xtxVx    where 0)0(  , and )(
2

x  as 
2

x , 

(b) 0)(),(
2
 xtxV  for all x, t 

where ),(),( txf
x

V

t

V
txV



















 ,  then the system is asymptotic stable at the origin, 

globally [43].

A function V(x,t)  satisfying (a) and (b) is a Lyapunov function.    If the function and 

conditions (a) and (b) are independent of the initial time, then the system is said to 

possesses uniform asymptotic global stability.   If the a function meets the conditions 
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given above only in a limited region  , rather than for all x as 
2

x , then the 

system is said to be semi-globally asymptotically stable.   The region   is called the 

region of attraction. 

In Theorem 2-1, condition (b) guarantees that the time derivative function ),( txV  be

negative definite.   If ),( txV  is only negative semi-definite, then the stability

classification degenerates from one of asymptotic stability to one of stability only.   

Clearly, if ),( txV  can go to zero at some point other than the origin, then it may be true

that 0x  at that point and the system state has stopped progressing toward the origin 

under study.   However, if ),( txV  is only negative semi-definite, and it can be shown that

no solution state yielding ),( txV  = 0 can exist forever except when x = 0, then it is

possible to upgrade the stability classification to one of asymptotic stability. 

In the above, system (2.1) is assumed to be time varying.   If it is not, i.e. 

)(xfx  (2.2) 

where 0)0( f , then the conditions for stability are much simpler, as follows: 

Theorem 2-2 (Asymptotic Stability, Time Invariant Systems)  For the system (2.2), 

if there exists a scalar function V(x) with continuous )( xV   such that 

(a) 0)( xV  for all x  except 0x  where 0)0( V , and 

(b) 0)()( 











 xf

x

V
xV



 for all x  except 0x , 

then the system possesses asymptotic stability in the region .   Again, if  is the entire 

state space, then system stability properties are global. 
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2.1.2 Stability of etLe )(  when 0)()(  tLtL  

The following n
th

 order ordinary differential equation

etLe )( (2.3) 

involving a matrix L(t)  that is symmetric, positive semi-definite and time-varying, is one 

that often occurs in filtering applications.   In [31] the authors exploit this specific

 structure to establish conditions of global asymptotic stability of (2.3).   In some of the 

etLe )( (2.4) 

is uniformly asymptotically stable if and only if there exist real number 0a and b such 

that  

 
t

t
o

o

bttadwL )()(  (2.5) 

0 ottfor all and all fixed unit vectors w.  A proof of this theorem can be found in [31]. 

If there exists a fixed vector w that causes the integrand of (2.5) to equal zero over 

the interval [to, t], such that (2.5) is violated (i.e. the integral does not increase with time 

t, then any state e along the line cw, where c is a scalar constant, will result in 0e  and 

any point along that line is an equilibrium over that interval, clearly violating the 

conditions for asymptotic stability.   Also, if there exists a fixed vector w such that the 

new methods presented in Chapter 4 the error dynamics are of the form as given by (2.3).

In these cases we use the following theorem to prove the stability of the method:

Theorem 2-3  Suppose L(t) is a symmetric positive semi-definite matrix of bounded 

piecewise continuous functions.   Then the equation 
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integrand 0)( wL  , then it is also true that the integral of )(L  must be singular.   Thus, 

as an alternative to condition (2.5), one can apply the following: 


t

t
o

o

dLttJ  )(),( is nonsingular for all t > to, and (2.6) 




),(lim o
t

ttJ (2.7) 

xtAx )( xtCy )(

2.1.3 Observability 

A stable observer can exist for systems which are observable.   A test for observability is 

therefore a useful first step in the development of any observer.  A linear 

system , with observations  is said to be observable if and only if it is 

possible to determine any arbitrary initial state x(0) by using only a finite record 

tty o  ),( , of the output.  The general condition that holds for an observabile  linear 

time-varying system is the following: 

Theorem 2-4  (Observability Grammian)  A system is observable if and only if the 

matrix: 

 dtCCtttM
t

t
o

o

),()()(),(),(   (2.8) 

A test for observability in nonlinear systems of the form, 

wxfx  )(

vxhy  )(

is given by Isidori in [23], where it is shown that in an observable nonlinear system, the

following is true: 

is nonsingular for some t>to , where  the integrand involves the state-transition matrix 

of the system.   Proof of this observability theorem can be found in [16].
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n

xhdL

xhdL

xdh

rank

n

f

f






















 )(

)(

)(

1


(2.9) 

In this expression, dh(x) is shorthand notation for 
dx

dh
, the Jacobian of h(x), and )(xhL f is 

the Lie derivative of )(xh  along vector field )(xf , defined recursively as 

))(()( 1 xhLLxhL n

ff

n

f



)()( xf
dx

dh
xhL f 

If the rank of the matrix given in (2.9) is less than n  in some region of the state space, the 

system is not observable in that region. 

2.2 Separate-Bias Kalman Filter 

In [11], Friedland considers the problem of simultaneously estimating the state x and

bias vector b of a linear process 

FEbBuAxx  (2.10) 

with observations 

 DbCxy (2.11) 

where 
nx  is the state vector, pb   is a vector of constant but unknown biases, 

ku  is the control vector, and my  is the measurement vector.  The vectors  and 

 are white Gaussian noise processes with spectral densities Q and R, respectively.   The

matrices A, B, C, D, E, and F are known and possibly time-varying.   Friedland points out 

that one method for handling this estimation problem is through state augmentation.   The 
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bias vector b is appended to the original state vector x,   bxxa , and a new state 

equation is formed by augmenting the original process dynamics (2.10) with the bias 

dynamic equation 

0b (2.12) 

The filter then estimates the bias terms as well as the state of the original problem.  This 

method is reasonably effective when the number of bias terms is small relative to the 

number of states.  Then, the bias does not significantly increase the dimension of the new 

problem.   On the other hand, when the number of bias terms is comparable to or larger 

than the number of states of the original problem, the augmented state vector is 

substantially larger in dimension than that of the original problem.  As a result, the filter 

implementation involves computations with much larger matrices which increases the 

likelihood of numerical conditioning difficulties, and in some cases precludes their 

solution and the accurate estimation of the state and bias. 

The Separate-Bias Kalman filter as given originally in [11], reduces the likelihood

of numerical conditioning problems by separating the state and parameter filtering 

equations into two separate filters that run in parallel, thereby reducing the sizes of 

x̂the matrices involved.  An optimal estimate  of the state x of the dynamic system, (2.10) 

and (2.11), is obtained by summing the “bias-free” state estimate    , computed as if no x~

bV ˆbias were present, and a bias correction term :

bVxx ˆ~ˆ  (2.13) 

b̂The optimal bias estimate  is obtained by  processing the residuals of the bias-free state

estimator, xCy ~ , in a filter that is separate and distinct fr m the bias-free filter, as

shown in Figure 2.1. 
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Figure 2.1  Separate-Bias Full-order Kalman Filter 

The Bias-Free State Estimator is given by 

)~(
~~~ xCyKBuxAx  (2.14) 

with the gain matrix 

1~~  RCPK (2.15) 

and bias-free covariance matrix  given by the standard equation for the covariance of 

the estimation error in the absence of bias 

QPCRCPAPPAP   ~~~~~ 1
(2.16) 

  




 

 )0()0(ˆ)0()0(ˆ
~

)0(
~

0 xxxxEPP

The Separate-Bias Estimator is given by 

 )~(ˆ)()(ˆ 1 xCybDCVRDCVMb  
(2.17) 

with the bias gain matrix V and the bias covariance matrix M given by the dynamic 

equations 

)
~

()
~

( 11 CRCPBVCRCPAV   pxpV 0)0(  (2.18) 

MDCVRDCVMM )()( 1  

   






 
 )0()0(ˆ)0()0(ˆ)0( bbbbEPM b

(2.19) 

Bias 

Estimate 

Bias-free  

State Estimator 

Separate-Bias 

Estimator residual 

measurement x̂

V 

x~

b̂
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Discussion  Over the last 30 years, Friedland’s Separate-Bias Kalman filter has received 

considerable attention.   Alternate derivations have been developed by Mendel and 

Washburn [28] and by Ignagni [21].   A suboptimal filter was derived by Ignagni for the 

case of time-varying bias [22].    An extended Kalman filter type of the separate-bias 

estimator for nonlinear systems was developed by Mendel [29].    The Separate-bias 

estimator has received this attention for two primary reasons: (1) many physical systems 

naturally take the separate-bias form, so that its application is convenient, and (2) it 

provides an inherent numerical stability and efficiency that can yield improved 

performance.   To see this, compare equations (2.16), (2.18), and (2.19), to the equation 

they replace, the (n+k)
th

 order covariance equation that arises with the augmented system,

aaaaaaaaaa QPCRCPAPPAP   ~~~~~ 1
(2.20) 

where Aa and Ca are the augmented system matrices, Qa the augmented plant noise matrix, 

and aP
~

 the covariance matrix for the augmented system.  Upon examination, one finds 

that the same number of differential equations are involved in either case; however, the 

number of simultaneous nonlinear differential equations which must be integrated to 

propagate (2.16), (2.18), and (2.19) is less than the number involved in the propagation of  

(2.20).  Equation (2.18) depends only on the solution P to (2.16), and (2.19), in turn,

depends only on the solution to (2.18).  Thus (2.16), (2.18), and (2.19) are serially (not 

mutually) coupled, and consequently they can be solved sequentially rather than 

simultaneously.    On the other hand, (2.20) involves the same number of mutually 

~
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coupled, simultaneous differential equations.   Since numerical integration errors increase 

rapidly with the number of simultaneous equations integrated, the estimated state and 

bias covariance as given by (2.16) through (2.19) can be expected to be more accurate 

than that given by (2.20).  Thus, the separate-bias full-order Kalman filter can be, and 

apparently often is, better conditioned numerically than the centralized Kalman filter 

arising with state augmentation.    

2.3 Reduced-order Kalman Filter 

The reduced-order Kalman filter to be used in herein applies to the systems that can be 

represented as: 

FBuAxx  (2.21) 

Cxy  (2.22) 

where nx   is the state vector, my   is the observation vector, ku   is the control 

vector,  is the white process noise vector with spectral density matrix Q, and where A, B, 

F, and C are known, possibly time-varying coefficient matrices of appropriate dimension.    

Observation noise is absent, as is the basic assumption with the reduced-order Kalman  

filter.  Also, without any great loss in generality, it is assumed that the state variables are 

defined so that the first m of them are measured directly  (i.e.  0IC  ) and the

remaining n-m are not measured at all.   This corresponds to a partitioning of the state 

vector and matrices in (2.23) and (2.24) as follows: 













































2

1

2

1

2

1

2221

1211

2

1

F

F
u

B

B

x

x

AA

AA

x

x




(2.23) 

(The overbars are used here for consistency with the notation employed in  Section 4.3.3)   
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Filtering Equations   The reduced-order Kalman filter for the process with the matrices 

partitioned as above is given by [15]:

yx 1
ˆ (2.24) 

Kyzx 2
ˆ (2.25) 

with 

uBKByKAKAxAKAz )()(ˆ)( 12112121222   (2.26) 

The Kalman gain K and covariance P of the error in estimating 2x are given by 

1

1212 )(  WFQFAPK (2.27) 

2212

1

12

~~~
FQFPAWAPAPPAP   (2.28) 

where 

12

1

1222

~
AWFQFAA  (2.29) 

QFWFQQQ 1

1

1

~  (2.30) 

11 FQFW  (2.31) 

The time derivative of the Kalman gain matrix in (2.26) can be generated by 

differentiating (2.27) with the help of (2.28).   Also, in these expressions it is assumed 

that the matrix W  is nonsingular, or equivalently, that the submatrix 1F is of full rank.   

A reduced-order Kalman filters of this form can therefore exist only for systems which 

have an independent source of noise driving each element of 1x , the vector of directly 

measured states  in (2.23). 

Equations (2.24)-(2.31) completely define the reduced-order Kalman filter and will 

serve as a starting point for the development of the Separate-bias Reduced-order Kalman 

filter in Section 4.3. 
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2.4 State Dependent Algebraic Riccati Equation Filter 

A new filtering technique known as the State Dependent Algebraic Riccati  Equation 

(SDARE) filter [32], is reviewed here and is applied in Section 4.3 to the joint state and 

parameter estimation problem.   In general, it applies to general nonlinear systems 

having the form:  

wxfx  )( (2.32) 

with measurement vector 

vxhy  )( (2.33) 

mn yx  ,

)()()]()([   ttWtwtwE

)()()]()([   ttVtvtvE

where the functions f(x) and h(x) are vectors of nonlinearities, , and the 

inputs w and v are gaussian, zero mean white process and measurement noise 

respectively, with spectral density matrices W and V: i.e.

and .    The SDARE method provides a suboptimal solution 

to the nonlinear estimation problem (see [32]) as follows.   First, the nonlinear system

(2.32) is converted to state dependent coefficient 

(SDC) form: 

wxxFx  )( (2.34) 

vxxHy  )( (2.35) 

where )()( xfxxF  and )()( xhxxH  .   A filter having the form of a Luenberger 

observer, but with state estimate dependent matrices is constructed: 

 xxHxyxKxxFx f
ˆ)ˆ()()ˆ(ˆ)ˆ(ˆ 

(2.36) 

with a filter gain given by 

1)ˆ()ˆ()ˆ(  VxHxPxK f . 
(2.37) 
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)ˆ(xP is the positive definite solution to the state-estimate-dependent algebraic Riccati 

equation 

0)ˆ()ˆ()ˆ()ˆ( 1   WPxHVxHPxFPPxF (2.38) 

A unique positive definite solution for all x̂  [in region ] can be obtained to equation 

(2.38) if either: 

 the system is asymptotically stable, i.e. )ˆ(xF  is a Hurwitz matrix for allx̂

[  ], or

 the system defined by the pair )]ˆ(),ˆ([ xHxF  is observable and the system

defined by the pair ]),ˆ([ 2/1WxF  is controllable for all x̂ [       ].

More detail on the theory and application of the SDARE approach can be found in [8]

and [9], where the authors develop the SDARE regulator for nonlinear control.

x̂
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CHAPTER 3 

3 EXISTING METHODS, AN OVERVIEW   3 

This chapter describes existing continuous-time methods for the on-line estimation of 

parameters only, and for the on-line simultaneous estimation of the state and parameters, 

in linear and nonlinear, continuous-time dynamic systems.   The parameter estimation 

problem arises when the entire state vector is available, i.e. m=n, so that only   need be 

estimated.   The state and parameter estimation problem occurs when m<n, so that both x 

and   must be estimated simultaneously.   These are discussed in Sections 3.1 and 3.2, 

respectively. 

3.1 Parameter Estimation 

The methods of this section apply to systems that can be represented by the following 

equations 

),,(),,()()()()()( uxtguxtEtutBtxtAtx   (3.1) 

The entire state vector is assumed to be available, i.e. )()( txty  .   The vector of 

unknown parameters,  , appears linearly in the dynamics through multiplication with the 

known coefficient matrix ),,( uxtE .   These parameters are to be estimated.   You will

recognize this as System Class B.

3.1.1 Standard Linear Theory 

The linear parameter estimation problem defined above can be readily handled by 

standard reduced-order observer and estimation theory.  This is demonstrated with the 

following two theorems. 
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Theorem 3-1  Let ˆ    represent the estimate of the unknown parameter vector.  Given

the system described by equation (3.1), if a matrix K(t) can be found such that the matrix 

product K(t)E(t) is a fixed (i.e. constant) Hurwitz matrix, then the parameter observer,  

xKuxtgEBuAxKz

zKx

 



)),,(ˆ(

ˆ




(3.2) 

is globally asymptotically stable.  (Note that the functional dependence of the observer 

dynamics on time is not shown in (3.2) to simplify the notation.) 

Proof   The estimation error: 


ˆe

is differentiated to define the error dynamics.   Noting that 0 , 











KEee

xKuxtgEBuAxK

xKuxtgEBuAxK

zxKxKe




















)),,(ˆ(

)),,((

ˆ

Since KE is a constant Hurwitz matrix, the observation error will decay asymptotically to 

zero regardless of initial condition, thus the observer (3.2) is globally asymptotically 

stable.  

Note 1   The problem defined above is often referred to as a bias estimation problem with 

 representing the unknown biases and with )(tE  being a fixed coefficient matrix.   In

any practical problem the rank of E will equal the number of unknown biases p; i.e. each 

bias will impact the state.  That being the case, it is always possible to determine a fixed 

K matrix such that KE is a fixed Hurwitz matrix, thereby satisfying Theorem 3-1. 
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Note 2   Practical applications do exist which involve a time-varying E matrix, and in 

some cases it is this time variation that enables the design of an asymptotically stable 

parameter observer by Theorem 3-1.   In the calibration of an inertial system, for 

example, the matrix E(t) is a piece-wise constant function that depends on the orientation 

of the input rate and acceleration vectors.   During well defined time segments, E is a 

known constant matrix, and an appropriate K is applied that causes specific elements of 

the parameter error vector to converge to zero.   The overall calibration experiment must 

be constructed so that over the entire calibration time interval, the entire parameter vector 

is estimated.   An experiment that achieves this will also meet the observability grammian 

rank condition given in Theorem 2-4 above.  

Note 3    Another way to generate a K(t) yielding global asymptotic stability when E(t) is 

time-varying is via the reduced-order Kalman filter described in Sec. 2.3.  In [14]

Friedland presents the full-order Kalman filter as a method for the estimation of uncertain 

parameters in dynamic stochastic systems.   It appears, however, that no one has 

suggested in the open literature that the reduced-order Kalman filter be used for 

parameter estimation in linear or nonlinear systems in cases where the entire state vector 

is available.  Nevertheless, it seems like a fairly obvious application of the theory, 

therefore it is presented below in order to provide a complete background of the existing 

techniques. 

Theorem 3-2 – Consider the system 

)(

)(),,(),,()()()()()(

tw

twuxtguxtEtutBtxtAtx x












(3.3) 
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where w and wx are white gaussian noise processes of appropriate dimension and with 

spectral density matrices Q and Qx, respectively. (Since the Kalman filter applies to 

stochastic systems, process noise is included in the parameter dynamics as well as in the 

state, although when the parameters are truly constants it is allowable to set Q = 0.) 

If the system is observable by Theorem 2-4, (with ),( t  the state transition matrix of 

the augmented system (3.3), and  pnnIC x0 ), then the parameter observer, given by 

(3.2) with gain and covariance: 

QPtEQtEPP

QtEPtK

x

x









)()(

)()(

1

1


(3.4) 

and initial covariance 0)0( PP  , is globally and asymptotically stable.   The derivative of 

K can be calculated with the equation 

1))()(()(  xQtEPtEPtK  (3.5) 

Proof   Application of the equations for the reduced-order Kalman filter, (2.23) through 

(2.30), to the augmented system  






















































 w

wuxtg
u

tBxtEtAx x

0

),,(

0

)(

00

)()(





with xxy  1
ˆ and ̂ˆ

2 x yields state and covariance equations (3.2) and (3.4) as given 

above.   Thus, (3.2) and (3.4) together comprise the reduced-order Kalman filter for 

estimating the unknown parameters of (3.1).   The parameter states are assumed to be 

observable, satisfying Theorem 2-4, therefore by standard Kalman filtering theory, the 

filter given by (3.2) and (3.4) is optimal and guaranteed to yield asymptotically 

convergent parameter estimates, globally.  
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(3.6) 

where the matrices A and B are known,  is the vector is unknown parameters, and E(x,u) 

is a matrix and g(x,u) a vector of known, possibly nonlinear functions of x and u.    

For the system having the form (3.6), Narendra and Kudva’s proposed filter has the 

following form: 

),,(ˆ),,()ˆ(ˆ uxtguxtExxABuAxx F  
(3.7) 

)ˆ(),,(ˆ xxPuxtE 


(3.8) 

The matrix nxn

FA   is a Hurwitz matrix chosen by the designer, and nxnP   is a 

symmetric positive definite matrix to be defined by the solution of the Lyapunov 

equation 

0 QPAPA FF

 Theorem 3-3 – Consider the system (3.6) and the state and parameter filters (3.7) and 

(3.8) with AF a Hurwitz matrix.   The convergence of the filter estimates to their true 

values is guaranteed, both globally and asymptotically. 

Proof   The following candidate Lyapunov function is proposed; 

3.1.2 Narendra and Kudva’s Method 

In Section 3.4 of [33], Narendra and Kudva develop a method for identifying linear time-

invariant systems of the form 

x = Ax  + Bu + Cg(x)

where the entire state vector x is available, where the matrices A, B, C are unknown (i.e.

contain unknown parameters).  A similar method is contained in [27].   For consistency

with the rest of this manuscript, we consider the following equivalent form: 

 x = Ax + Bu + E(t, x,u)  + g(t, x,u)  
.

.
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eePeeV xx


(3.9) 

The state and parameter errors, 


ˆ

ˆ





e

xxex

are differentiated for use in the candidate Lyapunov function, yielding; 

xF

x

eAeuxE

xxe





),(

̂

xPeuxtE

e

),,(

ˆ



 




Taking the time derivative of V along ex and e  yields 

    xFFxx ePAPAeePeEeV  
 2

(3.10) 

Clearly, the parameter update law causes the first term to drop out, leaving only the 

second.    Since FA is a fixed Hurwitz matrix, it is always possible to solve the Lyapunov 

equation 

0 QPAPA FF (3.11) 

for a positive definite matrix P,  given any nxn symmetric, positive-definite matrix Q. 

With (3.11) and the parameter observation law (3.8), the function (3.10) becomes 

0 xxQeeV

Hence, V is a Lyapunov function and the equilibrium {ex, e}={0, 0} is globally 

asymptotically stable. 

Discussion   Narendra’s and Kudva’a method can be applied to the same problem as that 

handled by the reduced-order Kalman filter discussed above; however, it can be less 
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demanding computationally.   When comparing the two, one notes that the Narendra and 

Kudva filter involves an additional n
th

 order state estimator, but does not include the pxp
th

order parameter covariance update matrix differential equation.   Thus, the number of 

independent differential equations with Narendra and Kudva is )( pn  , whereas with the 

reduced-order Kalman filter it is 2)3( pp .   The computational advantage of the 

Narandra-Kudva filter becomes more pronounced as the number of parameters increases. 

3.1.3 Friedland’s Parameter Estimator 

The parameter estimation method developed by Friedland [17] also applies to nonlinear

systems of the form (3.1); i.e. to systems affine in the unknown parameter.   His 

parameter observer is given by 

zx  )(ˆ  (3.12) 

)],(ˆ),()[( uxguxEBuAxxz   (3.13) 

(x) )(xwhere  is an appropriately chosen nonlinear function and  is its Jacobian matrix: 

ji xxx  )()( 

The differential equation for the propagation of the parameter estimation error 



 

euxEx

zxx

e

),()(

)(

ˆ












is a linear equation of the form 

etLe )( (3.14) 

where ))(),(())(()( tutxEtxtL  .   Thus, the problem is to find a )(x  yielding a (x) 

such that (3.14) is stable.    
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Theorem 3-4 – Consider the nonlinear system (3.6) and the parameter estimator given by  

(3.12) and (3.13).   If (x)  can be chosen such that L(t) as given by  

),()()( uxExtL 

is a positive semi-definite symmetric matrix, i.e. 

0)()()(  tCtCtL (3.15) 

and such that 
T

t
o dLtTJ

0

)(:),(  is nonsingular for all T > t0 and 


),(lim o
T

tTJ , then 

VuxEx ),()( 

convergence of the parameter estimation error is assured.    

Proof   One way to achieve the required symmetry and positive semi-definiteness is by 

setting , where V is a positive definite matrix.    For the complete proof, 

see [17].    

Discussion   Friedland’s method is the simplest computationally.   The parameter 

estimate is given by a single vector differential equation of order p, as compared to        

)( pn  and 2)3( pp  for the Narendra-Kudva (NK) and reduced-order Kalman filters, 

respectively.   However, while the NK and Kalman parameter estimators can always be 

applied, the application of Friedland’s estimator depends on the user’s ability to find a

(x) such that (3.15) holds true, and this may be a difficult in some cases.   If a suitable 

(x) cannot be found, then one can abandon that approach and turn to either the NK or 

Kalman filter approaches, which can both definitely be applied at a higher computational 

cost.

3.2 State and Parameter Estimation 

Section 3.1 discussed existing methods for continuous-time parameter estimation in 

systems falling into System Class B, with full state availability, y(t)=x(t), i.e. the 
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parameter estimation problem.   In this section, existing methods for simultaneous state 

and parameter estimation for systems of Class B and partial state availability are 

presented.   These include the methods of Narendra and Annaswamy, Bastin and Gevers, 

Rusnak, and Raghavan.   In addition, the application of standard Kalman filtering theory 

to this problem is covered.    Thus, we are considering 

)()(

)(),,()(),,()()()()()()()(

)(),,()(),,()()()()()()()(

1

22222221212

11112121111

txty

wtFuytgtuytEtutBtxtAtxtAtx

wtFuytgtuytEtutBtxtAtxtAtx















(3.16) 

3.2.1 Standard Linear Theory 

Because the nonlinear functions ()1E , ()2E , ()1g , and ()2g  in (3.16)  depend only on 

known quantities, t, y(t), and u(t), (3.16) can be represented equivalently as 

)()(

)()()()()()()()()()(

)()()()()()()()()()(

1

2222221212

1112121111

txty

wtFttEtutBtxtAtxtAtx

wtFttEtutBtxtAtxtAtx















(3.17) 

where ()1g  and ()2g  have been absorbed into the A11 and A21 terms.   Therefore, the 

state and parameter estimation problem defined above can be readily handled by standard 

linear reduced-order observer and estimation theory.   This is demonstrated in the 

following two theorems. 

Theorem 3-5 – Given the system described by equation (3.17), if matrices )(1 tK and 

)(2 tK can be found such that the matrix 














)()()()(

)()()()()()(

12122

11212122

tEtKtAtK

tEtKtEtAtKtA
(3.18) 

is a fixed (i.e. constant) Hurwitz matrix, then the observer 
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yKz

yKzx

yx
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1
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ˆ

ˆ
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





(3.19) 

yKuytgKuByAExAKz

yKuytgyAKAEKExAKAz

212111121221

11111211122121221

),,()ˆˆ(

),,()(ˆ)(ˆ)(


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






(3.20) 

is globally asymptotically stable. 

Proof   Substitution of (3.17), (3.19) and (3.20) into the derivatives of 22 x̂xex    and 


ˆe  yields

wFKFeEKEeAKAe xx )()()( 11211212122  


wFKeEKeAKe x 1212122  


or 

w
F

FKF

e

e

tEtKtAtK

tEtKtEtAtKtA

e

e xx
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




Since this error dynamics equation involves a constant Hurwitz matrix by assumption, the 

observer (3.19)-(3.20) is globally asymptotically stable.  

Note 1   If the matrices in (3.17) are time-varying, and it is difficult to find )(1 tK and 

)(2 tK matrices that such that (3.18) is constant, then the user can resort to the reduced-

order Kalman filter, i.e. (3.19)(3.20), with appropriate gain and covariance matrices.   

As an alternative, the separate-bias reduced-order Kalman filter, a new method 

developed herein and discussed in Section 4, can also be employed. 

Note 2   Rusnak, et.al., in  [38] and [40], examine the use of the Kalman filter for

simultaneous state and parameter estimation in single-input, single-output systems.   In 

particular, they focus on the persistence of excitation conditions needed to guarantee
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1xy 

of order n, with unknown parameters  can be represented by the following non-minimal 

(2n-1)
th

order system:

1

221

11

11

xy

ly

lu

wxx





















where   21  yuw , 1

1

 n , 1

2

 n , and 1

1 x , and where the scalar 

and the matrix  are user selectable design parameters.  The authors propose for this 

system the following state observer: 

x  = A( )x + b( )u

observability.   In [39], these same authors extend their analysis of observability to

multi-input, multi-output (MIMO) systems using non-minimal realizations of the

plant.   However, if the system is of System Class B, there is no need to convert to a 

non-minimal form, as one can apply the full or reduced-order Kalman filters to the 

augmented MIMO system directly.

3.2.2 Narendra and Annaswamy’s Method

A method for simultaneous state and parameter estimation in single-input single-

output (SISO), linear, time-invariant systems is developed by Narandra and 

Annaswamy in [34].    They use the fact that any controllable and observable SISO 

system

.
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1
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







and parameter adaptation law 

wyy ˆ)ˆ(ˆ 


where  is a user defined, diagonal weighting matrix .   A proof of stability for this system 

can be found in [34] and will not be repeated here. Some points to note regarding this

method: 

(1) It applies only to SISO time-invariant systems,

(2) The states of the original system are not estimated; those of the equivalent system are

estimated, and to examine these states, an inverse transformation must be applied.

(3) The designer of the observer is given no guidance in selecting l, , or .

3.2.3 Bastin and Gevers’ Method 

Bastin and Gevers develop in [3] a globally stable state and parameter observer for

single-input single-output nonlinear systems that can be represented as: 

)()(),()()( tgtuytRxtx  

)()( tCxty 
(3.21) 

where  001 C , and where R is of the form 



42 

















 



0

),,(

0

0

32 ncccF

k

R


(3.22) 

with 

 nkkkk 32

a vector of known constants, )1()1(

32 ),,(  nxn

ncccF  a constant matrix, and 

 ncc 2  a set of design parameters to be selected by the user.  Note that (R, C) must be 

an observable pair.  The unknown parameters in (3.21) multiply functions of only known 

quantities, therefore this system falls into System Class B.   For this system, the authors 

propose the following state and parameter observer: 

1

1

)1(

1

1

),()(

0)0(),,(

)(ˆ

ˆ

ˆˆ

)(ˆ)(
)(ˆ),(ˆˆ

nx

xnn

uykVt

VVuyFVV

et

yye

xy

ttV

c
tguyxRx





































where 1c is an arbitrary positive scalar,  is an arbitrary positive definite matrix, and 

where ()1 is the first row of ),( uy  and ()  the remaining rows, i.e.















1
),( uy

1 

n-1

       In [3] the authors demonstrate the transformation of several physical systems into

the necessary form given by (3.21)-(3.22).   Conditions permitting the application of a 
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nonlinear change of coordinates to transforms somewhat more general nonlinear systems 

into this form are provided by Ricardo in  [37]. 

3.2.4 Raghavan’s Method 

Raghavan, in [36], also considers the class of system we have defined as System Class B; 

Cxy

uytEuytgAxx



 ),,(),,(
(3.23) 

where for ease of notation the control input utB )( is assumed to be contained in ()g  and 

the plant noise is dropped.  Raghavan assumes that both A and C are constant matrices 

and that the pair  CA, is observable.    For this system he develops the observer given 

below, involving the following two auxiliary filters: 

),,()()()( uytEtLCAt  (3.24) 

),,()()()( uytgLytLCAt   (3.25) 

where nxp  and n .   The matrix L is chosen to place the eigenvalues of A-LC

in the open left half plane.   Both are initialized to zero, i.e. nxp0)0(  , n0)0(  .  The 

state observer is given by 

 ˆ)()()(ˆ tttx  (3.26) 

with the parameter update law 

)(ˆ CxyCk 
 (3.27) 

where k is an arbitrary positive scalar. 

Stability Analysis   Notice that the system dynamics (3.23) can be represented 
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),,(),,()( uytEuytgLyxLCAx 

The solution to the system dynamics equations (3.23) can therefore be written as 


 

t

tLCA

t

tLCAtLCA duyEeduygLyexetx
0

))((

0

))(()( ),,()),,(()0()(  

From this, Raghavan notes that the true state x(t) can be written in terms of the solutions 

to the auxiliary filter equations: 

 )()()0()( )( ttxetx tLCA   (3.28) 

The state estimation error xxex
ˆ  is thus readily shown to be

etxee tLCA

x )()0()(  

 where 
ˆe .   The parameter estimation error dynamics are derived similarly, 

))()0((

)ˆ(ˆ

)(



 

etxeCCk

CeCk

xxCCke

tLCA

x












Since A-LC is Hurwitz, the initial condition term decays to zero, leaving 





etM

etCCke

)(

)(





Thus, M(t) is a symmetric matrix, and by Theorem 2-3, if 


t

t
o

o

dMttJ  )(),( is nonsingular for all t > to, and (3.29) 




),(lim o
t

ttJ (3.30) 

then the observer is asymptotically stable globally.  
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CHAPTER 4 

4 NEW METHODS   4 

The five new methods developed as part of this dissertation effort are presented.   Two do 

not involve the use of Riccati equations: (1) the nonlinear observer obtained by 

combining the methods of Raghavan and Friedland, and (2) the nonlinear observer 

obtained by directly extending Friedland’s parameter observer to the case of partial state 

feedback.  The remaining three are those that do involve Riccati equations.   They are: (1) 

the Separate-bias Reduced-order Kalman filter, (2) the State Dependent Algebraic Riccati 

Equations (SDARE) filter applied to the problems of joint state and parameter estimation, 

and (3) the State Dependent Matrix Differential Riccati Equation (SDDRE) filter, 

proposed herein as a general filtering method and also applied to this joint estimation 

problem.   The global stability of the first three methods is proven.  The stability of the 

SDDRE filter when applied to bilinear systems of System Class C is examined and 

compared to that of the Extended Kalman Filter (EKF).   A proof of semi-global stability 

of the EKF for this system class under mild assumptions is also provided. 

4.1 Nonlinear Reduced-Order Observer 1 

A globally stable algorithm for simultaneous estimation of the state and parameters in 

nonlinear dynamic system with partial state availability is derived by combining the 

concepts developed by Raghavan in [36] for the design of a full order observer(reviewed

in Section 3.2.4) with the techniques used by Friedland in [16] to derive reduced-order

estimators.   The resulting filter has some nice advantages over the others.   The new 

filter is of order (n - m + p) + (n - m)p, which is lower than that of the Raghavan [36],
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4.1.1 System Class 

We’ll continue by considering the n
th

 order, multi-input, multi-output, uncertain nonlinear

system having the form : 

),,(),,()()( 112121111 yutEyutgxtAxtAx  (4.1) 

),,(),,()()( 222221212 yutEyutgxtAxtAx  (4.2) 

1xy  (4.3) 

where mnx 2  is the unknown state vector, ku  is the control vector, my  is 

the measurement vector, and p is the unknown constant parameter vector.   This is 

a noise-free version of System Class B.   The terms mmkg :1  and 

mnmkg :2  are known nonlinear functions. The matrices 

pmmkE :1 and pmnmkE  )(

2 :  are matrices of known nonlinear 

function that are affine in the unknown parameters.  The matrices 11A , 12A , 21A , and 22A

are known, possibly time-varying coefficient matrices. 

4.1.2 Observer Equations 

The state estimate will be given in the fashion typical of reduced-order observers: 

the Narandra-Annaswamy (NA) [34], and the Bastion-Gevers (BG) [3] filters.   In

addition, the new filter is somewhat easier to apply than the NA and BG filters, in that it

is not necessary to find and apply a coordinate transformation to bring the system into 

proper form.
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Lyzx  ˆˆ
2

(4.4) 

where L is to be a matrix to be determined by the user. The vector ẑ  is given by 

 ˆ)()(ˆ ttz  (4.5) 

where   p ˆ,,ˆˆ
1  is the vector of parameter estimates.   The vector and matrix 

functions,   and ,  are defined using two auxiliary equations: 

 ),,(),,())()(()()((

))()((

1212221121

1222

yutLgyutgyLtLAtAtLAtA

tLAtA







 
(4.6) 

 ),,(),,())()(( 121222 yutLEyutEtLAtA  (4.7) 

with pmn  )(  and mn .   One filter is initialized to zero; the other to )0(ˆ
2x ; i.e. 

pmn  )(0)0( and )0(ˆ)0( 2x .  The matrix L is selected such that the system 

 ztLAtAz )()( 1222  is stable; when 22A and 12A are time-invariant, L is chosen to place 

the eigenvalues of )( 1222 LAA   in the open left hand plane. 

A new observation typical of reduced-order filters is formed: 

),,()( 111 yutgytAyy   (4.8) 

(In the development of the reduced-order Kalman filter, this step results in an observation 

equation that contains noise, allowing the standard Kalman filter to be applied to the sub-

system governing the unmeasured states.)   This new equation is combined with (4.1) to 

yield another form of the new observation equation: 

),,()( 1212 yutExtAy  (4.9) 

A parameter update law driven by the residual, yy ˆ , is prescribed:

  ˆˆ),,(ˆ
1212 ExAyyuty 


(4.10) 

where 
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 112),,( EAyuty
 (4.11) 

At this point, were it not for the fact that y  depends on y , the time derivative of the 

measurement, we would stop and the filter would be defined by equations (4.4) through 

(4.11).    The y  term can be eliminated, however, if there exists a function (t,u,y) whose 

Jacobian matrix with respect to y is the matrix ),,( yuty  in (4.11):  

y

j

i

y






If such a function can be found, then by defining,

 zyut  ),,(ˆ (4.12) 

we see that 

),,(),,(),,(ˆ yutuyutyyutz tuy  


  (4.13) 

Then the substitution of (4.8) and (4.10) into (4.13) produces the desired result, the 

elimination of y , 

 

),,(),,(

ˆˆ),,(),,( 1212111

yutuyut

ExAyutgyAyutz

tu

y







 
(4.14) 

where  ),,( yutu  and ),,( yutt  are the Jacobians of (t) with respect to u and t,

y

y

y

respectively.   Thus, equations (4.12) and (4.14) can replace (4.10) and (4.8), thereby 

avoiding the use of .   The ability to do this depends, of course, on the success one has 

in finding a suitable function (t,u,y) having the needed Jacobian matrix.   If a suitable 

function cannot be found, then the user of this method would have to resort to the use of 

equations (4.10) and (4.8) involving .    

The idea of using a reduced-order form to eliminate  is used by Friedland in 

[16] derive the reduced-order Kalman filter.   Interestingly, the application of this
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technique here results in a parameter observer update law having the same form as the

parameter observer proposed by Friedland in [17] for nonlinear systems with full state

feedback.  This is further discussed below. 

4.1.3 Error Dynamics and Stability 

The system dynamic equation (4.2) can be converted into a form with a stable 

homogeneous part by adding and subtracting 212xLA : 

 22121222212 ),,()()( EyutgEyLxLAAyAx 

which becomes, by equation (4.8): 

yLLEEyutLgyutgyLAAxLAAx   )(),,(),,()()( 12121121212222

Our desire is to express the state dynamics in terms of z, where Lyxz  2 , thus: 

 

)(),,(

),,()()(

121

2122211211222

LEEyutLg

yutgyLLLAALAAzLAAz



 

This is a non-homogeneous, linear vector differential equation with two driving terms, 

one that is solely a function of time t, and the other that depends on a time dependent 

matrix and the true parameter .   Therefore z(t) can be expressed as:  

  





dLEEt

dyuLgyugyLLLAALAAtzttz

t

t

)(),(

),,(),,()(),()0()0,()(

12
0

1212221121
0







 

where ),( t  is the state transition matrix over  t,  for 1222 LAA  .   It should be noted 

that when dealing with time-invariant systems, 
))(( 1222),(

 


tLAA
et  and 0L .

So, by examining the above, one can see that the true z(t), like the estimate )(ˆ tz  in 

(4.5),  can be written in terms of the auxiliary filter dynamics, (4.6) and (4.7), as follows: 
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 )()()0()0,()( ttzttz 

 The state observation error, 22 x̂xex  , given (4.5), is therefore:

etzt

LyzLyzex

)()0()0,(

ˆ




(4.15) 

where 
ˆe .   Moreover, the parameter error dynamics as given by equation (4.10)

are 

 
ˆˆ),,( 1212 ExAyyute y  (4.16) 

Then, defining 

 112 EAC 

and 

  2xx

 we see by (4.9) that xCy  , and that (4.16) can be expressed 

















e

e
Cyut

xxCyute

x

y

y

),,(

)ˆ(),,(

Neglecting, for the moment, the exponentially stable initial condition term in (4.15), we 

note that 

 e
I

Cyute y 







 ),,(

However, by equation (4.11), this becomes 

     e
I

EA
E

A
Ie 




















 112

1

12

which is equivalent to 
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 eCCe  (4.17) 

with  I .

Proof of Stability    The stability of the system requires persistency of excitation.  This is 

assured if the following holds true.   There must exist positive constants  and 

 210   such that for all 0t : 

IdCCI
t

t
21 )()()()( 



 


 0e as Then, by Theorem 2.5.1 of Sastry [41],                     t          , globally, asymptotically,

and exponentially.   t

As an alternative proof, one must show that: 

 dCCttJ
t

t 
0

)()()()(),( 0

    

0tt 

and

 




),(lim 0ttJ
t

 Then, by Theorem 2-3 of Section 2.1.2, global, asymptotic stability of (4.17) is 

guaranteed, i.e. 0e  as t .   What then can be said about the state estimation 

error?    Since ),( t  is stable by assumption (or in the case of linear, time-invariant 

systems, )( 1222 LAA   is Hurwitz), the initial condition term in (4.15) decays 

exponentially to zero, leaving the second term.   From (4.15) it follows that  0xe  as 

t  also.    Thus, both the parameter and state observation errors converge to zero, 

globally and exponentially. 

4.2 Nonlinear Reduced-Order Observer 2 

Friedland’s parameter observer for nonlinear dynamic systems with full state availability 

is extended to include systems with partial state availability.  We begin by considering a 

is nonsingular for all 
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general nonlinear system, and for it derive the nonlinear observer equations.   Then, in 

order to illustrate the difficulty one encounters in generating a stability result when 

dealing with general nonlinear systems, we consider the class of systems that are affine in 

the unknown parameter  and involve nonlinearities that depend on the unknown state x2.    

Finally, these difficulties are avoided and a stability result is derived for the more 

restrictive system class, System Class A, which as stated earlier, is affine in a parameter 

and involves nonlinearities that depend only on the known quantities, t, y, and u.   Like 

Friedland’s original parameter observer, this new observer has very low computational 

overhead, the order of the filter equaling the number of unknown states and parameters, 

)( pmn  . 

4.2.1 Background 

Friedland extends the linear, reduced-order observer 

)ˆ(

ˆ





EBuAxKz

zKx







to nonlinear systems by replacing the linear gain term Kx by a nonlinear state dependent 

function (x) (see Sec. 3.1.3).   This lead to a procedure for defining xx  )( , the 

Jacobian of  (x), such that the convergence of the parameter observer is assured, 

globally (assuming conditions of persistent excitation are satisfied and the system is 

affine in the unknown parameter vector).   A important feature of Friedland’s method is 

its low computational requirement.   His parameter observer has order p, the number of 

unknown parameters.   There are no other dynamic equations involved, unlike Narendra’s 
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observer which also involves an n
th 

order state filter, or any of the others which involve

either auxiliary filters or covariance update equations. 

4.2.2 General Observer Equations 

Consider the following general nonlinear dynamic system with partial state available by 

direct measurement, 

1

2122

2111

),,,,(

),,,,(

xy

tuxxfx

tuxxfx















where mx 1  is the measured substate, my  the measurement, mnx 2  is the 

unmeasured substate, ku   the control, and p  the unknown parameter vector.   

Again we assume, without loss of generality, that the first m states are measured and the 

remaining n-m are not.   Following the approach taken by Friedland, we propose a 

reduced-order state observer with nonlinear gain (y): 

)ˆ,,ˆ,(

)(ˆ

2

2





uxyz

zyx

x

x







where 2x̂ is the estimate of x2, 
mnmy :)(  is a vector of arbitrary nonlinear 

functions of y, and mn

xz  is a nonlinear vector function (), which is to be defined. 

To estimate ,  an observer of similar form is proposed: 

)ˆ,,ˆ,(

)(ˆ

2 







uxyz

zy







where ̂  is the estimate of , pmy :)( is a vector of nonlinear functions of y, 

and pz  is a dynamic function of (), also to be defined below.
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The functions () and () are to be defined such that the origin of the state and 

parameter error space is an equilibrium state.  That is, 0e  when e = 0, where 

  eee x .   The state estimation error propagation is governed by 

),ˆ,,ˆ,(),,,,(
)(

),,,,(

ˆ

22122 tuxytuxyf
y

y
tuxyf

xxex





 










 

Setting ),ˆ,,ˆ,(
)(

),ˆ,,ˆ,(() 2122 tuxyf
y

y
tuxyf 




 








  allows the origin of the error 

space to be an equilibrium.   Then 

 ),ˆ,,ˆ,(),,,,()(),ˆ,,ˆ,(),,,,( 21212222 tuxyftuxyfyKtuxyftuxyfex   (4.18)

where 













j

i

y

y
yK



 )(
)( (y), the Jacobian of .   

Similarly, we note that the parameter estimation error is governed by 

),ˆ,,ˆ,(),,,,(
)(

ˆ

221 tuxytuxyf
y

y

e























So, by setting ),ˆ,,ˆ,(
)(

() 21 tuxyf
y

y





 








 , we have 

 ),ˆ,,ˆ,(),,,,()( 2121 tuxyftuxyfye   (4.19) 

where 













j

i

y

y
y



 )(
)( )(y, the Jacobian of .    Here again, the origin is an equilibrium. 

With these definitions for (y) and )(y , the state and parameter observer dynamic 

equations become:  
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),ˆ,,ˆ,()(),ˆ,,ˆ,(

)(ˆ

2122

2

tuxyfyKtuxyfz

zyx

x

x










(4.20) 

),ˆ,,ˆ,()(

)(ˆ

21 tuxyfyz

zy















(4.21) 

Functions )(y  and )(y  are to be defined such that the convergence of the observer 

estimates to the true values is assured. 

4.2.3 Error Dynamics for Systems Involving x2 and  

At this point we consider the somewhat more general class of nonlinear systems having 

the form:  

 ),,,(),,(),,()()()()( 211112121111 tuxyGtuygtuyEutBxtAxtAtx  (4.22) 

 ),,,(),,(),,()()()()( 221222221212 tuxyGtuygtuyEutBxtAxtAtx  (4.23) 

which, unlike System Class A, involve nonlinear matrix functions 

pmqmnmG  :1 and   pmnqmnmG  :2 .  They are 

affine in the unknown parameter vector   and depend in an arbitrary nonlinear way on 

the unknown substate x2.  They are included here initially to shown how they influence 

the error dynamics in a way that defies analysis.  Then they are removed to permit 

analysis. 

Substituting the state dynamic equations (4.22) and (4.23) into the error dynamics 

(4.18) and (4.19) result in the error equations: 

 







ˆ),,ˆ,(),,,(),,()(

ˆ),,ˆ,(),,,(),,(

2121112

2222222

tuxyGtuxyGetuyEeAyK

tuxyGtuxyGetuyEeAe

x

xx





 
ˆ),,ˆ,(),,,(),,()( 2121112 tuxyGtuxyGetuyEeAye x 

which in matrix form is: 
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 
  

















































ˆ),,ˆ,(),,,()(

ˆ),,ˆ,(),,,()(ˆ),,ˆ,(),,,(

)()(

)())((

2121

21212222

112

121222

tuxyGtuxyGy

tuxyGtuxyGyKtuxyGtyxyG

e

e

EyAy

EyKEAyKA

e

e xx




(4.24) 

where functional dependencies are eliminated except where necessary for clarity.    

The second term in (4.24), involving the nonlinear terms G1() and G2(), greatly 

complicates any analysis of stability that one would attempt for this system.     In fact, 

were it not for the presence of G1() and G2(), the error dynamics would be completely 

linear.   Therefore, to avoid this problem, we further restrict the class of system to that 

defined in Chapter 1 as System Class A, which is repeated below. 

4.2.4 Error Dynamics for System Class A 

We again consider System Class A: 

),,(),,()()()( 1112121111 tuygtuyEutBxAxtAtx   (4.25) 

),,(),,()()()( 2222221212 tuygtuyEutBxAxtAtx   (4.26) 

For this class of system, the observer error dynamics reduce to 































 e

e

EA

KEEKAA

e

e xx

112

121222 )(





which is a linear, time-varying, homogeneous matrix differential equation and as such, 

much easier to handle analytically. The observer equations for this class of system are: 

 ),,(ˆ),,()(ˆ)()()(

),,(ˆ),,()(ˆ)(

)(ˆ

11121211

22222221

2

tuygtuyEutBxtAytAyK

tuygtuyEutBxAytAz

zyx

x

x













 (4.27) 
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 ),,(ˆ),,()(ˆ)()()(

)(ˆ

11121211 tuygtuyEutBxtAytAyz

zy















(4.28) 

For the purpose of the following theorem, we define: 















112

1212
)(

EA

KEEKA
tM (4.29) 

and 











00

022A
A (4.30) 

That is, AeMee  .    We also assume that A22 is Hurwitz. 

Theorem 4-1   Given the nonlinear dynamic system (4.25) and (4.26) of System Class 

A, and the state and parameter observers (4.27) and (4.28), if functions (y) and )(y  

can be selected such that M(t) is a positive semi-definite symmetric matrix, then a 

sufficient condition for the convergence of the state and parameter errors is the existence 

of positive constants  210   such that for all 0t : 








t

t
IdMI 21 )( (4.31) 

Proof   Consider the candidate Lyapunov function, 

PeeV 

 where   eee x  and where P is a constant, symmetric, positive definite block

diagonal matrix, 











2

1

0

0

P

P
P

partitioned in accordance with the dimensions of x2 and ; that is P1 is an (n-m)x(n-m) 

matrix and P2 is an pxp.    The time derivative of V is  
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ePAPAeePMMPe
dt

dV
)()(  (4.32) 

Since P is positive definite symmetric and M is positive semi-definite symmetric by 

design, the term MP + PM will also be positive semi-definite and symmetric.   Thus, the 

first term in (4.32) is a positive semi-definite symmetric matrix which we will designate 

R(t).   Also, given (4.31), clearly there exists two other positive constants 1  and 2 , 

such that for all :0t  

 
 


 


t

t

t

t
IPdMdMPI 21 )()( (4.33) 

The second term can be simplified due to the block diagonal structure of P and A. 

Defining  











2

1

0

0

Q

Q
Q

we have 

2

1221122

0 Q

QAPPA





And since A22 is a fixed Hurwitz matrix, it will always be possible to find symmetric, 

positive-definite matrices P1 and Q1.   Thus,  

0)(  QeeetReV

and therefore 

0)()()(  etCtCeetReV

Moreover, 0V for all t only when,

(1) 0e for all t, or 

(2) 0)( etC for all t, 
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which is not possible if (4.33) holds. Thus, stability of the observer,(4.27) and (4.28), for 

the conditions noted is proved.   

4.2.4.1 Design Procedure: 

1. Choose )(y  and K(y) such that M(t) is both symmetric and positive semi-definite;

i.e.

   ),,(),,()( 1212 tuyKEtuyEAy

 )()( 1212 yKAAyK  and 

 )(),,(),,()( 11 ytuyEtuyEy 

2. Verify that (4.31) is satisfied.

3. Determine the vector functions )(y  and )(y  having jacobians )(y  and )(yK .

This design procedure is illustrated in the following two examples. 

4.2.4.2 Simulation Example One:  Consider the simple, second order system with one 

unknown parameter: 

)(

1




ssu

y

which, in the required form is: 

u
y

x

x

x

x












































1

0

000

10

2

1

2

1






and 1xy  .   The submatrices 0222111  AAA , 112 A , yE 1 , and 02 E .   

Following the design procedure stated above; 
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1. The time-varying matrix 













yyy

yyKyK
tM

)()(

)()(
)( , so to achieve symmetry and 

positive semi-definiteness, set KyK )( , where K is a constant, and set Kyy  )( .   

Then  















2
)(

KyKy

KyK
tM

 which is symmetric and positive semi-definite for any K > 0. 

2. One can test if (4.31) is satisfied for any y(t) and find that it is satisfied.

3. The following observer functions are identified as having the needed jacobians:

2

2
)(

)(

y
K

y

Kyy









Following (4.27) and (4.28), one finds that the observer equations are: 

 ̂ˆ

ˆ

2

2

yxKuz

zKyx

x

x







 







ˆˆ

2
ˆ

2

2

yxKyz

zy
K







With all initial conditions of zero, a true parameter  = 1, and an observer gain K = 1, the 

simulation results shown below in Figure 4.1 show that the observer estimates converge 

to their true values.   
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Figure 4.1  Simulation of Nonlinear Observer 2 in Simple 2
nd

 Order Example

4.2.4.3 Simulation Example Two:  In this example, we consider the third order system 

with two unknown parameters and two measurements: 

u

x

x

x

x

x

x


















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


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
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
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0

000

1

010

3

2

1

21

3

2

1









 21 xxy 

which in required form is 

uyy

x

x

x

x

x

x
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


























































































1

0

0

00

00

000

100

010

2

1

21

3

2

1

3

2

1











Thus, we have the following submatrices 











00

10
11A 










1

0
12A  0021 A  022 A

time (sec) 
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and, 













21

1

00

yy
E  002 E

Given the dimensions of this problem: 

      yKyKyK 21  
   

   












yy

yy
y

2221

1211

thus, the matrix 

     
     
      
























22212222

21211212

22112

)(

yyyyy

yyyyy

yyKyyKyK

tM . 

Now, following the design process defined above; 

1. To achieve a form for M(t) that can be made symmetric, we let

   21 KKyK    









22

1121

0 yL

yLyL
y

where K1, K2, L1, and L2 are constants.   Then, 










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




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2

2221222
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22112
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yLyyLyL

yyLyLyL

yKyKK

tM

which can be made symmetric by setting 11 KL  and 22 KL  , such that 
























2

2221222

211

2

1111

22112

)(

yKyyKyK

yyKyKyK

yKyKK

tM

The matrix M(t) is then positive semi-definite for any 01 K  and 02 K . 

2. One can test if (4.31) is satisfied for any y(t) and find that it is satisfied.

3. Observer functions that are consistent with the jacobians K(y) and )(y , were found:
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

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and following (4.27) and (4.28), the observer equations are: 
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With observer gains 121  KK , initial conditions  

0)0()0()0( 321  xxx

 

0)0(ˆ)0(ˆ1)0(ˆ
321  xxx

 true parameters 11  and 1.02  , initial parameter estimates 0ˆ
1   and 0ˆ

2  , and 

probing input )3sin(10)2/sin( ttu  , the observer performs as shown below in Figure 

4.2.  Note that the observer estimates converge to their true values. 

4.2.5 Comparison of the Non-Riccati Equation Based Methods 

Nonlinear Observers 1 and 2 are both extensions to Friedland’s method for parameter 

estimation in nonlinear systems with full state availability [17].    Comparison of the two 

reveals that their parameter update laws are identical.   One can see this by comparing
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equation (4.28) to equations (4.12)-(4.14).   They are also identical to Friedland’s in [17]

except for the appearance of the estimated state .  The state update laws, however, are 

different, as can be seen by comparing (4.27) to (4.4)-(4.7).   A closer examination of 

these differences is potential an area of future research. 

Figure 4.2   Simulation of Nonlinear Observer 2 in 3
rd

 Order Example

4.3 Separate-Bias Reduced-Order Kalman Filter 

In this section the optimal two-stage Kalman filter for linear systems that involve noise-

free observations and constant, unknown bias is derived.   This new filter consists of two 

uncoupled filters running in parallel, one providing an estimate of the bias vector, and 

one an estimate of the unmeasured state vector.   The absence of measurement noise 
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results in a reduction in the order of the state estimator, the order equaling the number of 

states less the number of observations.   Like the full-order separate-bias Kalman filter 

developed in 1969 [11], this new filter offers the same potential for improved numerical 

accuracy and reduced computational burden over the centralized Kalman filter arising 

with state augmentation.    In Section 4.3.3, this new filter is applied to the problem of 

state and parameter estimation. 

4.3.1 System Class 

The problem under consideration is that of simultaneously estimating the state x and bias 

vector b of a linear process 

FEbBuAxx  (4.34) 

with observations 

Cxy  (4.35) 

where nx   is the state vector, pb   is a vector of constant but unknown biases, 

ku  is the control vector, my  is the measurement vector,   is a white gaussian 

noise process with spectral density matrix Q, and where A, B, C, D, E, and F are

coefficient matrices, possibly time-varying.  It will be assumed that the states are

arranged such that the first m are directly measured and the remaining n-m are not 

measured at all; ie.  0IC   and   21 xxx .   The more general observation 

equation 

DbCxy 

can be accommodated by converting to the assumed form (4.35) by a simple coordinate 

transformation of the form Txz  . 
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4.3.2 Filter Equations 

The separate-bias reduced-order Kalman filter developed herein is presented below in its 

entirety in equations (4.36) through (4.50), and is shown in block diagram form in Figure 

4.3.   The initial state and bias estimates and covariances are given by )0(x̂ , )0(b̂ , )0(xP , 

and )0(bP , respectively.   The bias is assumed to be constant and governed by the 

equation 0b .   The matrices ijA , iB , iE , and iF are the submatrices of (4.34), 

partitioned in accordance with the dimensions of 1x and 2x .   The process noise   is a 

zero mean, white gaussian noise process with covariance   )()()(   tQtE .

Optimal State Estimates: 

yx 1
ˆ (4.36) 

bSxx ˆ~ˆ
22  (4.37) 

Bias-Free Filter: 

yKzx
~~~

2  (4.38) 

yKuBKByAKAxAKAz
 ~

)
~

()
~

(~)
~

(~
12112121222 

)0(ˆ)0(~
2xz 

(4.39) 

1

1212 )
~

(
~  WFQFAPK x

(4.40) 

2212

1

121111

~~~~~~~~
FQFPAWAPAPPAP xxxxx
 
,    

)0()0(
~

xx PP  (4.41) 

12

1

122211

~
AWFQFAA  (4.42) 

1

12212

~  WFQFEA (4.43) 

QFWQFQQ 11

~
 (4.44) 

11 FQFW  (4.45) 
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Separate-Bias Filter: 

yKzb 22
ˆ  (4.46) 

  yKuByAbSAExAKz 211112121222
ˆ)(~   , )0(ˆ)0(2 bz  (4.47) 

1

1122 )(  WEASMK (4.48) 

MESAWEASMM )()( 112

1

112  
,    

)0()0( bPM  (4.49) 

)
~

()
~

( 121222 EKESAKAS  ,    0)0( S (4.50) 

 

Figure 4.3   Separate-Bias Reduced-Order Kalman Filter 
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Theorem 4-2 – The optimal filter in separate-bias form for the linear system governed by 

equations (4.34)-(4.35), and driven by zero mean, white gaussian process noise  having 

spectral density Q, is that given by (4.36)-(4.50).   If the system state variables and 

biases are all observable, so that Theorem 2-4 holds, then the global asymptotic 

convergence of the filter estimates to the true values is assured. 

Proof    It has long been known that the optimal filter for the linear dynamic system 

(4.34) having measurements that are free of noise is the reduced-order Kalman filter [15]

In the remainder of this section the reduced-order Kalman filter is converted to an 

equivalent separate-bias form. This equivalence therefore guarantees that it is both 

optimal and globally convergent, as is its progenitor.  






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









2

1

2

1

2

1

2

1

2221

1211
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F
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b

E

E
u

B

B

x

x

AA

AA

x

x




(4.51) 

1xy  (4.52) 

 (The more general observation equation, (4.35), can be converted into this simpler form 

(4.52) by defining a new substate 1x


and applying the change in variable

DbCxxy 
1


 to both (4.34) and (4.35).)  The bias vector b is then appended to the 

state vector of (4.51) to form the new state vector,   bxx 21 .   

Derivation of the Coupled Filtering Equations This development begins with the

application of the reduced-order Kalman filter to a system with unknow bias.   First, the

state vectorof the system (4.34) and (4.34), is partitioned into directly measured and 

unmeasured substates:
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In accordance with the reduced-order filter given in Section 2.3, we define the sub-

vector of unmeasured states 2x to contain the unmeasured dynamic states 2x and the 

unknown bias vector b, 











b

x
x

2

2

and the sub-vector of directly measured states 1x is to contain only 1x .   Equation (4.51) 

then becomes 


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(4.53) 

where use has been made of the bias dynamic equation, 0b .   So by comparing (4.53)

with (2.23), one identifies the following submatrices: 

 








































00000

2

2

2

2
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21

111112121111

F
F

B
B

EA
A

A
A

FFBBEAAAA

(4.54) 

These, when substituted into the general reduced-order Kalman filtering equations (2.24) 

–(2.26), yield the following coupled state update equations: 

yx 1
ˆ (4.55) 

yKzx 112
ˆ  (4.56) 

yKzb 22
ˆ  (4.57) 

yKuBKB

yAKAbEKExAKAz

1112

111211122121221

)(

)(ˆ)(ˆ)(








(4.58) 

yKuByAbExAKz 2111121222 )ˆˆ(   (4.59) 
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Note that the gain matrix K given by (2.27), its time derivative K , and vector z of (2.26)

are partitioned accordingly: 











2

1

K

K
K 










2

1

K

K
K
















2

1

z

z
z

A similar approach is taken to derive the coupled covariance update equations.   The 

matrix P of (2.28) is partitioned in accordance with the substates contained in 2x as 

follows: 













bxb

xbx

PP

PP
P

where   Px   autocovariance of estimate of state x2 

Pb autocovariance of estimate of bias b 

Pxb cross covariance of x2 and b 

Using the submatrices (4.54) and the covariance matrix equation (2.28) we derive: 

22112

1

112

12111211

~
)()(

~~~~

FQFPEPAWEPAP

APAPPAPAP

xbxxbx

xbxxbxx







(4.60) 

)()(
~~

112

1

1121211 bxbxbxbxbxb PEPAWEPAPPAPAP   (4.61) 

)()( 112

1

112 bxbbxbb PEPAWEPAPP   (4.62) 

where 

12

1

122211

~
AWFQFAA  (4.63) 

1

12212

~  WFQFEA (4.64) 

QFWQFQQ 11

~
 (4.65) 

Similarly, the partitioned Kalman matrices in (4.56) and (4.57) are derived by expanding 

(2.27): 
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1

121121 )(  WFQFEPAPK xbx

(4.66) 

1

1122 )(  WEPAPK bxb

(4.67) 

where 

11 FQFW  (4.68) 

which completes the derivation of the coupled state and covariance equations.  In this 

coupled form, the reduced-order Kalman filter for systems with bias offers no advantage 

over the centralized reduced-order Kalman filter from with it was derived.  The claimed 

improvement in numerical stability and computational efficiency is achieved by casting 

this filter into the separate-bias form, which thereby eliminates the coupling.   This is 

done below. 

The “Bias-Free” State Estimator    It is noted that (4.61) and (4.62) together are 

homogeneous in xbP and bP .    Hence, if 

0)0(0)0(  bxb PP

then 

00  bxb PP (4.69) 

for t > 0, and hence xP satisfies 

2212

1

121111

~~~~~~~~
FQFPAWAPAPPAP xxxxx
  (4.70) 

The interpretation of (4.69) and (4.70) is that if the bias b is perfectly known at t = 0, then 

by virtue of 0b , it is perfectly known thereafter and the estimation problem reduces to

that in which there is no bias.  The bias-free estimator is therefore the reduced-order 

Kalman filter, (4.56), (4.58), and (4.66) with the simplifications that result when 0ˆ b ,

0bP and 0xbP : 
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yKzx
~~~

2  (4.71) 

yKuBKByAKAxAKAz
 ~

)
~

()
~

(~)
~

(~
12112121222  (4.72) 

1

1212 )
~

(
~  WFQFAPK x

(4.73) 

(Wiggles (~) rather than hats (^) are used to denote the new variables of the “bias-free” 

filter.)  

The State Transformation   As in the case of the full-order separate-bias Kalman filter, 

we introduce the transformation: 

bSxx ˆ~ˆ
22  (4.74) 

where 2
~x  is the estimate of 2x if no bias were present.   The matrix S is to be determined 

such that this relationship (4.74) holds.  To this end, we substitute into (4.74) equations 

(4.56), (4.57), and (4.71), yielding  

)(
~~

2211 yKzSyKzyKz  (4.75) 

For this expression to hold for all y independent of the estimator states 1z , 2z , and z~ , the 

terms multiplying y must cancel, thus 

21

~
SKKK  (4.76) 

which leaves 

21
~ Szzz  (4.77) 

In order for (4.76) and (4.77) to hold we must have 

221

~
KSKSKK   (4.78) 

221
~ zSzSzz   (4.79) 

Into this last equation we substitute equations (4.58), (4.59) and (4.72).  Then, using 

equations (4.76), (4.78), and (4.57) to simplify the result yields,  

  0ˆ)()()( 112211212122  bSESASKEKESAKA 
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Finally, using (4.76) to eliminate K1 results in 

  0ˆ)
~

()
~

( 121222  bSEKESAKA 

which is satisfied when 

)
~

()
~

( 121222 EKESAKAS  (4.80) 

Thus, when S is computed using (4.80), the transformation equation relating 2x̂  to 
~x

and b̂  holds true.   The initial condition on S is to be determined to satisfy a condition

derived below. 

The Separate-Bias Estimator    The dependence of the separate-bias estimator on the 

optimal state estimate 2x̂ is eliminated by substituting (4.74) into (4.59), yielding 

  yKuByAbSAExAKz 211112121222
ˆ)(~   (4.81) 

You will note that the Separate-Bias Estimator depends on the known input u, feedback 

of b̂ , and on y and ~x , which is to be expected.  In the full-order case, the input to the

separate-bias estimator is the residual of the “bias-free” estimator [16]. Since there

2

u

~x

bias estimate bP .   The covariance matrix that applies when the bias is perfectly known is 

to be denoted by 

is no residual in a reduced-order filter, both the measurement y and the "bias-free" 

estimator output    , which together are somewhat equivalent to the "bias-free" residial,

serve as inputs to the separate-bias estimator. 

Decoupling of the Variance Equations   The covariance P, defined originally by (2.28)

and in partitioned form by (4.60)-(4.62) is expressed in terms of the covariance P that

applied when the bias is known, plus a correction which depends on the covariance of the
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









00

0
~

~ xP
P (4.82) 

where xP
~

 is the solution to (4.60) with )0(
~

xP  given.   It is noted that  is also the solution 

to (2.28) when 











00

0)0(
~

)0(
~ xP
P (4.83) 

If the bias is not perfectly known, however, (4.83) is not the correct initial condition.   

Instead the initial covariance  will be 













)0(
~

)0(
~

)0(
~

)0(
~

)0(
~

bxb

xbx

PP

PP
P (4.84) 

where 0)0(
~

bP  and )0(
~

xbP  may or may not be zero.   The question is how much xP
~

, xbP
~

, 

and bP
~

 change as the result of changing the initial conditions from (4.82) to (4.84)?  This 

is answered by making use of the fact that if  is a solution to (2.28) then any other 

solution can be expressed as follows [13].

VVMPP 
~

(4.85) 

where 

VAWAPAV )
~~

( 12

1

12

 (4.86) 

VMAWAVMM 12

1

12

 (4.87) 

The coupling matrix is partitioned in accordance with the size of 2x and b: 











b

x

V

V
V (4.88) 

By partitioning (4.86) accordingly, and substituting in the definitions of A
~

 given by 

(2.29) and of 12A and 22A in (4.54), one finds 

P

P
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bx

xxx

VEWAPEWFQFE

VAWAPAWFQFAV

)
~

(

)
~

(

1

1

121

1

122

12

1

1212

1

1222








(4.89) 

0bV i.e., Vb = constant (4.90) 

Similarly, (4.87) becomes 

MVEVAWEVAVMM bxbx )()( 112

1

112  
(4.91) 

Furthermore, the submatrices of (4.85) can be computed as follows: 

bbb

bxxb

xxxx

VMVP

VMVP

VMVPP






~

(4.92) 

Hence, it is possible to avoid the solution of the mutually coupled equations (4.60)-(4.62)  

to determine  Px, Pb, and Pxb.   Instead, one need only compute  xP
~

, Vx, Vb, and M, using 

the equations which are not mutually coupled, (4.70), (4.86), (4.90), and (4.87), and use 

these results in (4.92).    

The initial conditions Vx(0), Vb(0), and M(0) of (4.89)-(4.91) must be properly 

selected to satisfy 

)0()0()0()0(

)0()0()0()0(

0)0()0()0()0(
~

)0(

bbb

bxxb

xxxx

VMVP

VMVP

VMVPP







These initial conditions are not unique.   For the important special case in which Pxb(0) = 

0, i.e. when there is no a priori correlation between the state and bias, one choice of 

initial conditions is 
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I.V

V

PM

b

x

b







)0(

0)0(

)0()0(

(4.93) 

In this case Vb = I for all t > 0, and 

.MP

MVP

b

xxb




(4.94) 

Now, upon use of (4.72) and (4.93) one finds that (4.89) reduces to 

)
~

()
~

( 121222 EKEVAKAV xx  (4.95) 

Similarly, (4.91) and (4.67) become 

MEVAWEAVMM xx )()( 112

1

112   (4.96) 

1

1122 )(  WEAVMK x (4.97) 

Note that equation (4.95) is the same as the matrix differential equation (4.80) governing 

S.   Hence, by setting 0)0()0(  xVS , we have xVS  for all time.   This 

simultaneously satisfies the state transformation relationship (4.74) and the variance 

transformation equations given by (4.93)-(4.97). 

Steady-State Observer    In certain applications the accuracy and complexity of the time-

varying Kalman filter may not be needed, and in its place a steady-state observer may 

suffice.    The steady-state separate-bias reduced order observer has the same structure as 

that shown in Figure 4.3; however, the Kalman gain matrices, K
~

 and 2K , are replaced 

by constant matrices determined in some other way, e.g. pole placement.  The bias 

correction matrix S of (4.80) then becomes a constant matrix given by: 

)
~

()
~

( 12

1

1222 EKEAKAS  
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4.3.3 Application to State and Parameter Estimation 

Equations (4.34)-(4.35), the system for which the Separate-bias Reduced-order Kalman 

filter was developed, are equivalent to the nonlinear system class identified in Section 1.2 

as System Class B;   

)()()(

)(),,()(),,,()()()()()(

txtCty

wtFuytgtuytEtutBtxtAtx



 

 )ˆ(),ˆ( xCxA x̂

Thus, this new method can be readily applied to the problem of simultaneous state and 

parameter estimation in problems of System Class B.   The unknown parameter vector  

is simply interpreted as a bias. 

4.4 SDARE State and Parameter Observer 

The State Dependent Algebraic Riccati Equation (SDARE) method develop by Mracek, 

et.al. [32] is applied in this section to the problem of simultaneous state and parameter 

estimation.   Although conditions for the convergence of the filter have not been 

determined, the method has proven to work quite well when simulation tested in several 

examples involving lower order, nonlinear systems, including some from System Class 

C. However, as the number of unknown parameters increases beyond two, the

requirement for the observability of the pair  at each along

the trajectory ttx o  :)(ˆ , as needed to generate filter gains, becomes difficult to 

meet.  This has lead us to conclude, therefore, that the SDARE method is best suited for 

state and parameter estimation problems when only two or three unknown parameters are 

involved.  In addition, it has prompted the development of a nonlinear filter which is 

similar to the SDARE filter in that it involves a state dependent Riccati equation, but 
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differs in that it avoids the need for state and parameter observability at each instant in 

time. 

System Class    The SDARE method defined by (2.36)-(2.38) can be applied directly to 

general nonlinear systems expressed here in State Dependent Coefficient form: 

wuxExuxAx  ),(),( (4.98) 

vuxCxuxHy  ),(),( (4.99) 

4.4.1 Filter Equations 

To develop the SDARE filter for simultaneous state and parameter estimation we use the 

common approach of state augmentation.   The parameters are assumed to evolve in 

accordance with 

  (4.100) 

where  is gaussian zero mean white noise with )()()]()([    ttWttE . The 

SDARE filter then estimates the parameters as well as the state, assuming that conditions 

of observability and controllability (discussed below) are satisfied in the augmented 

system.   

Adjoining  to x yields a state vector of n+p components, 












x
x (4.101) 

Equations (4.98)-(4.99) can be then be written in compact form: 

awxxFx  )( (4.102) 

vxxHy a  )( (4.103) 

where 
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xExA
xF a

00

)()(
)(  )()()( xCxHxHa  (4.104) 

and where dependence on u is not shown for clarity.   In addition we define 

)()()]()([   ttWtwtwE x , )()()]()([   ttVtvtvE , and further define 











W

W
W

x

a
0

0
(4.105) 

 (Although the true parameters may be constant, the spectral density W  used in the 

design of the filter must be nonzero with rank p, otherwise the filter gains associated with 

some elements of  will be zero.) 

Application of the SDARE method to this system results in filter equations, 

]ˆ)ˆ(ˆ)ˆ()[ˆ(ˆ)ˆ(ˆ)ˆ(ˆ  xCxxHyxKxBxxAx x 
(4.106) 

]ˆ)ˆ(ˆ)ˆ()[ˆ(ˆ   xCxxHyxK 
 (4.107) 

where the filter gain matrix has been partitioned as follows: 











)ˆ(

)ˆ(
)ˆ(

xK

xK
xK

x

f



(4.108) 

and where )ˆ(xK f  is given by (2.37) with )ˆ(xP  being the positive definite solution to: 

0)ˆ()ˆ()ˆ()ˆ( 1  

aaa WPxHVxHPxFPPxF
(4.109) 

The SDARE filter is given by equations (4.106) – (4.109). 

Observability Requirements   A system can be observable in the nonlinear sense as 

defined by (2.9) and yet fail the “linear system” observability test defined for the pair 

)]ˆ(),ˆ([ xHxF .  When using the SDARE nonlinear filtering methodology, the system 

under study must pass both the linear and nonlinear observability tests.   Then, not only is 

it truly observable in the nonlinear sense so that an observer can exist for the system, but 
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it will also be possible to use the “linear systems” algebraic Riccati equation as a 

mechanism for generating filter gains. 

The Separate-Parameter SDARE Filter   The technique defined above requires the 

solution of an (n+p)th order algebraic Riccati equation on each pass through the filter, 

where n and p are the number of states and unknown parameters, respectively.   Because 

this algebraic Riccati equation must be solved in real time,  in problems of higher 

dimension, time loading and/or the cost for controller electronics can become an issue.  

Another related issue is that of numerical ill-conditioning due to the larger size of the 

matrices involved.   This problem is addressed by this author in [18] where a two-stage 

arrangement is developed for the nonlinear SDARE filter when applied to state and 

parameter estimation.   The original (n+p)th order filter is broken into an n
th

 order

“parameter-free” state estimator, and a pth order “separate-parameter” filter, where p is the 

number of parameters and n the number of states.   The (n+p)th order ARE is replaced by 

a pth order ARE and an n
th

 order ARE which must be solved on-line on each pass through 

the filter, plus a nxpth dimension matrix differential equation which must be integrated on-

line.   This method has been shown to perform successfully in several examples in [18] 

and has been successfully applied in [35] to an induction motor.

4.4.2 Examples 

4.4.2.1 Friction Estimation and Compensation: A second-order system with friction 

is considered: 

uxx

xx





)sgn( 22

21




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with  being the coefficient of friction to be estimated.   The position 1x is measured:

1)( xxy 

Although the measurement is noise free, the filter is given a nonzero measurement noise 

spectral density so that the filter gains are finite, and the process noise is selected to 

“excite” all of the states of the augmented system: 

   1
10

00
1 








 WWV x

 The matrices of the state-augmented SDARE filter, (4.99)-(4.102) which will be used to 

estimate both the state vector and friction coefficient, are 

  





























1

0
01

)ˆsgn(

0
)ˆ(

00

10

2

DH
x

xBA

All three states of the augmented system are observable, as the following algebraic 

observability test so indicates.  Noting that  001aH : 

  3

)ˆsgn(00

010

001

))ˆ(()ˆ(

2

2 





















x

rankHxFHxFHrank aaa

thus the system is observable for all x̂ . 

The control law in this example is taken to be of the form 

)ˆsgn(ˆˆ20)ˆ(200 221 xxxxu d 

where xd is the desired value of the position y.    The last term i n the control law results in 

friction compensation.  The gains were selected to yield a natural frequency of 10 rad/sec 

and damping factor of 0.707.   Figure 4.4 shows the transient response of the combined 

state and friction coefficient estimator with a square wave reference input shown (solid 

line) and initial conditions 
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0)0(ˆ500)0(ˆ0)0(0)0(ˆ0)0( 2211  xxxx

 The estimated coefficient of friction converges on the actual value, and as it does, 

tracking response improves.   The hangoff error present initially is eliminated after 

several cycles. 
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Figure 4.4  SDARE Filter Performance, Friction Estimation And Compensation Example 

4.4.2.2 Damped Harmonic Oscillator:  A linear second-order system with natural 

frequency 1 and damping 2 is given by 

uxxx

xx





22112

21





It is assumed that the state x1 is available for direct noise-free measurement, and that the 

two parameters are unknown but constant.  The nonlinear observability test, equation 

(2.9), is applied to the augmented nonlinear system with   2121 xxx .   Thus, 

the observation equation and state equation function )(xf  are given by: 



83 






















0

0
)()(

2211

2

1

uxx

x

xfxxhy


The observability test matrix (2.9) is: 























)2()()(

0010

0001

2211122

2

2121

2121

uxxxx

xx





has full rank as long as the state {x1 , x2} avoids the origin.   In other words, the nonlinear 

system is observable if it is persistently excited.   However, it is shown below that the 

system does not pass the linear observability test unless the parameter dynamics model 

provided to the filter is modified.  There are two parameters and two parameter dynamic 

equations that enter into the filter.  One is left alone and the other is changed to a markov 

process with a very long (10
5
) time constant:

222

11













In this example the matrices of the state-augmented SDARE filter are 

  
















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


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





1

0
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ˆˆ

00
)ˆ(

00
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21

DH
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xBA

. 

so in this case 











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










000

0000

ˆˆ00

0010

)ˆ(
21 xx

xF

Noting that  0001aH , we find 
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 











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










22

1

32

ˆˆ00

0ˆ00

0010

0001

)ˆ()ˆ()ˆ(

xx

x
rankHxFHxFHxFHrank aaaa

 .

Thus the system passes the linear observability test for all ˆ x  except the origin, if  is not 

equal to zero.   

The simulation results for this system, for the following numerical data, 

  51
10

01

10

00
1 

















 eWWV x 

the following initial conditions, 

0)0(ˆ1.00)0(ˆ10)0(ˆ0)0(0)0(ˆ0)0( 22112211  xxxx

and the control input 

)5sin()sin( ttu 

 are shown in Figure 4.5 and Figure 4.6.   The estimation errors all converge to zero. 
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Figure 4.5   State Estimation Error, Damped Harmonic Oscillator 
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Figure 4.6   Parameter Estimation Error, Damped Harmonic Oscillator 

4.4.3 Discussion 

In this last example a system with two unknown parameters was found to be nonlinearly 

observable for all x in a region of the state space, but not linearly observable in that same 

region.   As a result, the SDARE would not provide gains for use in the SDARE filter.   

The parameter states each contribute a pole at the origin and a row of zeros in )ˆ(xF  

which results in the loss of linear observability needed to solve the ARE at each instant in 

time.   To avoid this problem, each new parameter state must be disguised from the others 

by adding insignificant terms to those equations which make those parameter states 

“linearly” observable.  The ARE will then provide a set of gains for what it sees as a 

linearly observable system.   If the system is truly observable, the filter may converge.   

However, as the number of unknown parameters increases (beyond two), it become more 

difficult to fool the ARE solver by altering the parameter state dynamics, and thus the 
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 T,0

suitability of the SDARE method decreases.  The technique in the next section was 

developed to avoid this problem. 

4.5 A New Nonlinear Filter  

In this section a new nonlinear filter is proposed which avoids the shortcomings of the 

SDARE filter.  This new filter does not require that the dynamic system be linearly 

observable at every instant, as does the SDARE filter.  Instead, it must be observable over 

a finite time interval .   This essential difference is achieved through the use of a

differential Riccati equation rather than the algebraic Riccati equation as used in the 

SDARE filter [32].    

The new filter is generated using the State Dependent Coefficient (SDC) 

representation of the nonlinear plant.   Both the state estimate and covariance propagation 

equations are based upon this SDC system representation.   Thus, this filter is the natural 

nonlinear extension of the time-varying Kalman filter to nonlinear systems using the 

State Dependent Riccati Equation approach.   Because it involves a state dependent 

differential Riccati equation, it is similar to the Extended Kalman filter (EKF); however, 

the EKF involves Jacobian matrices, whereas the new filter involves the SDC matrices. 

The stability of both the new filter and the Extended Kalman Filter (EKF) when 

applied to the joint state and parameter estimation problem are examined below.   Ljung 

has shown in [25] that the EKF, when applied to this problem, does not possess the 

property of global asymptotic convergence, but in fact may diverge or provide biased 

estimates.  Nevertheless, for the EKF, a candidate Lyapunov 
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function is derived that proves, under mild assumptions, the existence of a semi-global 

region of asymptotic stability.   

4.5.1 Filtering Equations 

In the definition of the new general nonlinear filtering approach, we consider the general, 

time-dependent nonlinear system 

vxhy

wxfx





)(

)(
(4.110) 

expressed in State Dependent Coefficient form as follows: 

vxxHy

wxxFx





)(

)(
(4.111) 

The new filter being proposed is: 

 

1)ˆ()ˆ(

ˆ)ˆ()()ˆ(ˆ)ˆ(ˆ





VxHPxK

xxHxyxKxxFx

f

f


(4.112) 

where P is the solution of the state dependent, matrix differential Riccati equation 

WPxHVxHPxFPPxFP   )ˆ()ˆ()ˆ()ˆ( 1 (4.113) 

with initial condition 

 ))0()0(ˆ))(0()0(ˆ()0( 0
 xxxxEPP

The matrices W and V are symmetric, possibly time-varying design matrices, positive 

semi-definite and positive definite, respectively, to be defined by the user.   They are 

essentially the equivalent of the process and observation noise spectral density matrices 

of the linear Kalman filter. 

Note 1   This filter given above differs from the Extended Kalman filter for the nonlinear 

system (4.110), in that there is no use of the jacobians of the system and observation 
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nonlinear function vectors, ),( xtf  and ),( xth .   Instead, the filter is entirely defined in 

terms of the matrices given by the State Dependent Coefficient form  (4.111).  The EKF, 

on the other hand, is given by: 

 

1)ˆ()ˆ(

)ˆ)ˆ()()ˆ(ˆ)ˆ(ˆ





VxHPxK

xxHxyxKxxFx

f

f


(4.114) 

and P given by the solution of the matrix differential Riccati equation 

WPxHVxHPxFPPxFP   )ˆ()ˆ()ˆ()ˆ( 1 (4.115)

)x̂ )ˆ(xH )ˆ(xf )ˆ(xh

)ˆ(xF )ˆ(xH

where  F(      and           are the Jacobians of the vectors          and      , respectively.   

Unlike           and           of the new filter, the Jacobians do not permit the flexibility of 

parameterization. 

Note 2   Cloutier, et.al., in [8] and [9], did not readily have the option of using a 

differential Riccati equation in their definition of the nonlinear SDARE regulator, 

because in the underlying linear optimal control problem the Riccati equation is solved 

backwards in time.   They chose therefore to use the control algebraic Riccati equation 

as a means for generating regulator gains.   In the case of the nonlinear filtering 

problem, however, the underlying optimal filtering problem involves a covariance 

propagation equation that moves forward in time, making the extension to a real-time, 

nonlinear algorithm possible.   The generation of the temporal Riccati solution using a 

differential rather than an algebraic Riccati equation also makes sense from a 

computational viewpoint because it is much less computationally demanding to 

propagate a Riccati equation one step forward in time by numerical integration than it is 

to solve the algebraic Riccati equation.
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4.5.2 Local Stability 

Theorem 4-3   Assume that the SDC matrices F(x) and H(x) are smooth, having 

continuous first derivatives, and that the pair (F(x), H(x)) is observable in a small 

neighborhood  around x̂ .  Then the new nonlinear filter, (4.112)-(4.113), is locally 

asymptotically stable.    

Proof   Propagation of the error between the true and estimated states, xxe ˆ , is 

governed by the dynamic equation: 

 xxHxyxKxxFwxxFe f
ˆ)ˆ()()ˆ(ˆ)ˆ()( 

Since F(x) and H(x) are smooth, it is possible to represent each by a partial Taylor series 

of 

)ˆ(xF

and )ˆ(xH  expanded bout x̂ : 

)()ˆ(
ˆ

)ˆ(
)ˆ()( 2eOxx

x

xF
xFxF 






)()ˆ(
ˆ

)ˆ(
)ˆ()( 2eOxx

x

xH
xHxH 






 which is valid in some small neighborhood  around x̂ .   Thus, 

ex
x

xF
xxFxxF

ˆ

)ˆ(
)ˆ()(






The second term in this equation is small compared to the first because of the presence of 

e, and can therefore be ignored, leaving xxFxxF )ˆ()(  .   Similarly, for H(x) we have

xxHxxH )ˆ()( 

Therefore, in a small neighborhood about x̂ , 

  wxxHxxHxKxxFxxFe f  ˆ)ˆ()ˆ()ˆ(ˆ)ˆ()ˆ(

which, neglecting noise is, 

exHxKxFe f )]ˆ()ˆ()ˆ([  (4.116) 
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Since  is small and both F(x) and H(x) are smooth, the matrix  )ˆ()ˆ()ˆ( xHxKxF f  is

approximately constant for all x̂ in .   By Riccati  equation theory, this matrix is 

guaranteed to be Hurwitz (i.e. all eigenvalues left of the imaginary axis), thus (4.116) is 

stable, locally and asymptotically. 

4.5.3 Application to Bilinear Dynamic Systems 

System Class C, which includes terms involving the multiplication of unknown 

parameters and unmeasured states, can be represented as follows: 

   





w

wuGtBxEtAx x







 )()()()(
(4.117) 

  vxDtCy  )()(  (4.118) 

The vectors xw , w and v are white noise processes.   The known input utB )( in 

equation (4.117) above will be dropped from this point forward for brevity.   If a known 

control input exists, it must simply be added where appropriate in the filtering equations 

that follow. 

The state and parameter vectors are appended in the usual manner, yielding 


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
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
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u

GxEAx x
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


(4.119) 

  v
x

DCy 










 0))(( (4.120) 

However, because the system is bilinear the following relationships may be defined: 

 )()( xRxE 

 )()( uQuG 

 )()( xUxD 
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where nxnE )( , nxpxR )( , nxmG )( , nxpuQ )( , mxnD )( , and 

mxpxU )( .   As a result, the system equations (4.119)-(4.120) can be expressed as
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(4.121) 

  v
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
 0))(( (4.122) 

 or in the following equivalent form: 
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  v
x

xUCy 
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







)( (4.124) 

In fact, any linear parameterization relating (4.121)-(4.122) and (4.123)-(4.124) is also a 

valid and exact representation of the underlying system dynamics.   If we define the 

parameterization scalars  and , 10  , 10   , we then have 



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
(4.125) 

  vxxUDCy 










 )()1()(
(4.126) 

Thus, parameterized system matrices are defined: 


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

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 
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00

)()()1()(
),,(

uQxREA
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


 )()1()(),( xUDCxH  

so that in terms of the appended state  


xx , the bilinear system can be 

represented as: 
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wxuxFx  ),(
 (4.127) 

y H  (x)z  v (4.128) 

The new filter, when applied to this system is therefore: 

 
1)ˆ()ˆ(

ˆ)ˆ()()ˆ(ˆ),ˆ(ˆ





VxHPxK

xxHxyxKxuxFx

f

f 


(4.129) 

where P is the solution of the matrix Riccati differential equation 

WPxHVxHPuxFPPuxFtP   )ˆ()ˆ(),ˆ(),ˆ()( 1




0)0( PP 

(4.130) 

The EKF is also to be generated, as a point of comparison, for bilinear systems. The EKF 

for the augmented system (4.127) - (4.128) is: 

 
1)ˆ()ˆ(

ˆ)ˆ()()ˆ(ˆ),ˆ(ˆ





VxHPxK

xxHxyxKxuxFx

f

f 


(4.131) 

where P is the solution of the matrix Riccati differential equation. 

WPxHVxHPuxFPPuxFtP   )ˆ()ˆ(),ˆ(),ˆ()( 1

0)0( PP 

(4.132) 

It involves the Jacobian matrices:








 


00

)()()(
),,(

uQxRBEA
uxF


 (4.133) 

 )()(),( xUDCuxH  (4.134) 

Notice that these are invariant with respect to parameterization value.

4.5.4 Stability Background 

Before embarking immediately upon an assessment of stability for the filters defined 

above, it will be helpful to step back within the body of known theory, to examine related 
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problems that we know possesses guaranteed stability properties, and review the 

applicable stability theory.  Then it will be more readily apparent how stability is affected 

by the extension being considered.   To move back into known theory, it will be assumed 

that there exists perfect knowledge of the system parameter vector   in for the bilinear 

system, (4.117) - (4.118).  That is, the parameter vector   is known initially and the 

process noise driving the parameter dynamics w  is zero for all 0t .   The filtering 

problem then becomes one of state estimation only, and the new filter (4.129)-(4.130), 

and the EKF (4.131)- (4.132), becomes a standard, linear Kalman filter, for which 

stability is guaranteed.  The theory reviewed will cover: 

 a linear, time-invariant system and filter with gain given by filter algebraic

Riccati equation,

 a linear, time-invariant system and time-varying Kalman filter, and

 a linear, time-varying system and time-varying Kalman filter.

Lyapunov stability can be shown in all of these cases.    The impact that the extended 

condition -- parameter uncertainty -- has upon stability, is examined for both the EKF and 

the new filter. 

Case A: Time-Invariant System and Filter   The system and filter are in this case given 

by: 

)()()(

)()()(

tvtCxty

twtAxtx





1

10

))(ˆ)(()(ˆ)(ˆ











VCPK

WCPVCPAPAP

txCtyKtxAtx

To guarantee the existence of a stabilizing gain matrix K, the fixed design matrices V and 

W must be positive definite and positive semi-definite, respectively.   In addition, the 



94 

pairs  CA,  and  21,WA  must be observable and controllable, respectively.  This

guarantees the existence of a positive definite solution to the filter algebraic Riccati 

equation, and the existence of K. 

To prove stability, we consider the candidate Lyapunov function: 

)()()( 1 tePteeL 

involving the inverse of the constant matrix P, and the error vector, )(ˆ)()( txtxte  .   

The error dynamics are easily shown to be )()()()()( tKvtwteKCAte   .   Thus the 

candidate function has the following time derivative along the solution trajectories,

  111

11

2)()( 







PeeKCAPPKCAe

ePeePeL 

where vtKw )(  is the noise.   Noise is neglected below as it does not impact the 

stability result.   Noting that the algebraic Riccati equation can be manipulated as 

follows: 

1111 )()()(

)()(

0

 





PWKKVPPKCAKCAP

WKKVKCAPPKCA

WKCPKCPKCPAPAP

one finds that when substituted into the above, 

  ePWKKVPeL 11  

 Although W and KVK’ are individually only positive semi-definite, given standard 

Riccati equation theory, their sum is guaranteed to be positive definite.    

Consider now the conditions of Theorem 2-2.   Since the matrix P is symmetric and 

positive definite, the same is true for 1P , so that

(a) 0)( eL  for all 0e  
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satisfying Condition (a).    In addition, the matrix  WKKV   is symmetric and positive 

definite, and therefore   11   PWKKVP  is symmetric and positive definite also, such 

that 

(b)  0)( eL  for all 0e  

which satisfies Condition (b).   Thus both conditions of Theorem 2-2 are satisfied.   )(eL  

is therefore a Lyapunov function and the global asymptotic stability of the filter is 

proved. 

Case B: Time-Invariant System and Time-Varying Kalman Filter   The system 

equations are the same as above, however the filter is now given by 

  

 

1

1

)()(

)()()()()(

)(ˆ)()()(ˆ)(ˆ











VCtPtK

WtCPVCtPAtPtAPtP

txCtytKtxAtx





 

So, for this case the error dynamics, 

  )()()()()()( tvtKtwteCtKAte 

 are time varying. 

To prove stability,  we consider a candidate Lyapunov function involving the inverse 

of the time-varying covariance matrix )(tP : 

)()()()( 1 tetPteeL 

 Taking the time derivative along the solution trajectories yields, 

etPtPtPeetPeetPeL )()()()()( 1111   

 into which we will substitute the expressions for e  and )(tP .   Before doing so, however, 

note that the Riccati equation can be expressed as follows: 

WtCPVCtPCtKAtPtPCtKAtP   )()())()(()())(()( 1
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Thus,  upon substitution into the above, 

 
e

PWCPVCtPCtKAtPtPCtKAtP

CtKAtPtPCtKA
eeL
























111

11

)())()(()())(()(

))()(()())((
)(

where we have again neglected the noise term.   After simplifying this expression 

becomes: 

 

  etPWtKVtKtPe

etWPtPCVCeeL

)()()()(

)()()(

11

111









which is of the same form as the previous case, except that K(t) and P(t) are now time 

varying. 

Although the system is time invariant, the filter is not, so to assess stability it is 

necessary to apply the more restrictive conditions of Theorem 2-1.   This theorem 

requires that the candidate, time-varying Lyapunov function be bounded from above and 

below by fixed, time invariant positive definite functions.   In addition, the time 

derivative of the candidate function must be bounded from above by a fixed, time 

invariant negative definite function. 

To identify an upper bound on L(t) it is necessary that no row or column of P(t) go to 

zero as t .   This is true only if the system is controllable by the noise, i.e. that the 

time invariant pair ],[ 21WA  is controllable.  In general this requires that W be positive 

semi-definite, including diagonal elements that guarantee rank P(t) = n, or equivalently, 

that there exist no zero rows of P(t) for all 0t .   Then it is possible to identify a scalar 

value on the unit hypersphere 

etPe
e

)(sup 1

1





 for all 0t  

such that 
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eeetPetL   )()( 1 for all 0t  

Thus it is necessary that the system be controllable by the process noise matrix W for the 

Lyapunov function to exist. 

To identify a lower bound, it is necessary that the time invariant system be 

observable as defined by the pair  CA, .    If not observable, the covariance of the

unobservable state(s) which are being driven (i.e. controlled) by the process noise as 

defined above will tend to infinity as time increases.   The associated diagonal elements 

of the covariance inverse )(1 tP  will go to zero as a result, causing L(t) to violate any 

lower quadratic bound that might be placed upon it.   Thus, if the system is observable, 

)(1 tP will not go to zero and it will be possible to identify a minimum that occurs on the

unit hypersphere . 

etPe
e

)(inf 1

1




 for all 0t  

Because )(1 tP is positive definite,  is guaranteed to be greater than zero, so that

0)()( 1   eeetPetL 

Thus it is necessary that the system be observable for the Lyapunov function to exist. 

In summary we have

 eetLee  )(0

and Theorem 2-1, Condition (a) is satisfied.

Consider next the time derivative of L(t), which is, neglecting the noise term, 

  etPWtKVtKtPeeL )()()()()( 11   (4.135) 

Again, by standard Kalman filtering theory for a system that is both observable and 

controllable, the time-varying matrix that appears here is positive definite.  Consequently, 
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it is possible to determine, for any particular initial covariance matrix which defines P(t) 

for all t, a scalar value   such that 

  etPWtKVtKtPe
e

)()()()(inf 11

1






Then, 

0)(  eetL  for all   0t  

which satisfies Condition (b) of Theorem 2-1.   L(t) is therefore a Lyapunov function, and 

the Kalman filter is asymptotically stable about the origin e = 0.   Since the system is 

linear, asymptotic stability is assured globally.

Case C:  Time-varying System and Time-varying Kalman Filter   The analysis of 

stability in this case is identical to that of Case B and therefore will not be repeated.   

However, for time-varying systems, the controllability and observability requirements 

that must hold for a Lyapunov function to exist are defined in terms of the Observability 

and Controllability Grammians (see [16]) rather than the algebraic tests.  If these   

)(tL  

4.5.5  Stability with Bilinear Dynamic Systems 

The error dynamics of the new filter and of the EKF both evolve in accordance with: 

 xxHyxKxuxFxuxF

xxe

f
ˆ)ˆ()ˆ(ˆ),ˆ(),(

ˆ

 

 
(4.136) 

where the gain matrix )ˆ(xK f  will depend which filter is used.   It should be evident that 

we are free to choose the parameterization values,  and ,  for both the true system and 

requirements are satisfied, quadratic bounds o the functions L(t) and   can be shown 

to exist, making L(t) a Lyapunov function, and guaranteeing the asymptotic stability of

the time-varying Kalman filter globally.
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the dynamic model used in the filter and that different values could be used for each.   

There could be four different values used, that is.    However, to avoid the added 

complication, we consider just two cases: 

(1)   =  = 0

(2)   =  = 1

The same values are used in both the filter and in our representation of the true system. 

Case (1) is examined first.   Here, 

   















 
















 


 ˆ

ˆ

00

)()ˆ(

00

)()(
ˆ),ˆ(),( 00

xuQxRAxuQxRA
xuxFxuxF

and 

   

















 ˆ

ˆ)ˆ()(ˆ)ˆ()( 0
xxUCxxUCxxHxy

These expressions involve the estimated and true state and parameter vectors.   It would 

be useful to rewrite these in terms of submatrices that multiply the error vectors, 

xxex
ˆ  and 

ˆe .   To that end, the following substitutions are used:

xAexAAx  ˆ

















exReE

exReR

exRxRxReR

exRxeRxRxR

x

x

x

x

)ˆ()(

)ˆ()(

)ˆ()ˆ()ˆ()(

))(ˆ()ˆ(ˆ)ˆ()(









 euQuQuQ )(ˆ)()( 

xCexCCx  ˆ

  exUeDxUxU x )ˆ()(ˆ)ˆ()( 

 Thus, the error dynamic and measurement equations can also be expressed as: 
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 
  
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
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
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
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






e

e
xUDC

K

K

e

euQxREA

e

e x

f

fxxx
)ˆ()(

00

)()ˆ()(




(4.137) 

  












e

e
xUDCxxHy

x
)ˆ()(ˆ)ˆ(0 (4.138) 

Note that the matrices in these expressions are different than those of the system 

equations, (4.121)-(4.122), or (4.123)-(4.124).   There are two additional submatrices 

appearing in each, )ˆ(xR and )ˆ(xU .   In fact, you will note that with these terms, the 

matrices above are the jacobians of the system and observation vectors respectively, 

evaluated at the estimated state x̂ , the control vector u and the true parameter  . 

We now consider Case 2 where   =  = 1.  In this case 


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
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
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xDCxDCzzHzy

By going through the same type of algebraic manipulations as above, we find that in this 

case the error dynamics and measurement equation are: 
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(4.139) 

  












e

e
xUDCzzHy

x
)()ˆ(ˆ)ˆ(1 (4.140) 

These are identical in form to that of Case 1, (4.137)-(4.138); however, these involve x 

and ̂ , while those of Case 1 involved x̂  and .   

In the more compact form, the error dynamics can be expressed exactly as either: 



101 

Case 1:  exHuxKeuxFe f ),ˆ(),ˆ,ˆ(),,ˆ(   (4.141) 

Case 2:  exHuxKeuxFe f )ˆ,(),ˆ,ˆ(),ˆ,(   (4.142) 

So the error dynamics in either case depend on an estimated term and on a true term.   It 

turns out that this complicates the proof of stability.  Since neither case avoids this 

complication, we will continue only with Case 1 from this point forward. 

4.5.5.1 Stability of the EKF:  The following candidate Lyapunov function is proposed: 

etPetL )()( 1 (4.143) 

where P(t) is the solution of a differential Riccati equation, either (4.129) or (4.132).   

Taking the time derivative along the error state trajectory (4.141) yields 

 

 

  ePWPxHVxHPuxFPPuxFPe

exHuxKuxFPe

ePuxKxHuxFe

ePPPeePeePetL

f

f
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1111
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



where you will note that the covariance propogation equation of the EKF has been used 

to define P .   This is simplified in the same manner as done in previous section on

Background, by subtracting and adding the term HVH 1 in the third line of the

equation.    Doing so results in
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noting that HKPHVH f

11   .     After some rearrangement, this expression becomes 

 
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(4.144) 

A quick look at the first four lines of this expression and one might think that they all 

cancel, but they do not.   The true parameter vector   appears in some, and the estimated 

parameter vector ̂  in others.   (In Case 2 it the true state x and the estimated state x̂  that 

preclude cancellation.)    Further simplification of (4.144) can be accomplish by 

examining individual terms.   For example, 
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Similarly, 
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)ˆ()ˆ()ˆ()()ˆ,ˆ(),ˆ(







eD

DD

xUDCxUDCxHxH







So if a new matrix is defined: 
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 
















 0)(),ˆ,ˆ(

00

0)(
),ˆ,ˆ,( 



  eDuxK
eE

uxeS f (4.145) 

then (4.144) can be expressed as: 

 eWPPxHVxHuxeSPPuxeSeL 11111 )ˆ,ˆ()ˆ,ˆ(),ˆ,ˆ,(),ˆ,ˆ,(    


or equivalently, 

   etPtSPStPWtKVtKtPeL )()()()()()( 11   (4.146) 

This is a quadratic expression that contains two terms. The first term 

 WtVKtK  )()(

is that which appears with the standard Kalman filter for linear systems and state 

estimation only.    This term is symmetric and will be positive definite if the system is 

controllable by the noise (as defined by W) and observable.   The second term is 

symmetric but indefinite.   Note that when parameter uncertainty is zero, i.e.  ˆ , then

S = 0, the second term disappears and the expression (4.146) reduces to exactly the same 

equation (4.135) as that of the standard Kalman filter for state estimation only.  Thus the 

additional term represent the impact that parameter uncertainty has on this stability 

assessment.   However, because 0S  as 0e , the first term can and will dominate 

the second in some region of the error state space including the origin.  Clearly, this is 

true over some finite region around the origin where 0e  where S vanishes, i.e. S = 0.    

In fact, the matrix function S of (4.145) is linear in e  and can be represented 

  euxXuxeS ),ˆ,ˆ(),ˆ,ˆ,( 

where X is an (n+p) x p matrix.  Thus, we have 

  eXePPXePWtKVtKPeL 
1111 )()(  


 (4.147) 
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The new terms are cubic in the error, whereas the original terms are second order in the 

error.   The second order, quadratic terms will dominate the cubic terms over a finite 

region of the error space, thus we can conclude that this function indicates that there 

exists a finite (as opposed to arbitrarily small) region of the error space wherein the 

candidate Lyapunov function is positive definite.    

 Theorem 4-4  If the bilinear system described by equations (4.119) - (4.120)  is: 

(a) Controllable: The Controllability Grammian

 dTWWTtTN
T

t
),(),(),(  

 is non-singular for some finite interval  Tt, ,  where ),( tT  is defined by:

  ),()(),(),(),( 00 tttuttxFtt  
 and I),( 00  tt

given some positive semi-definite matrix W. 

(b) Observable: The control input u persistently exciting over the interval  Tt,  as

indicated by the non-singularity of the observability grammian: 

  dtxHxHtttM
T

t
o ),())(),(())(),((),(),( 00  

(c) Controllable and Observable along estimated trajectories: The bilinear system that

satisfies Conditions (a) and (b) along the actual state trajectories )(tx  and with the true 

parameters  , also satisfies (a) and (b) along the estimated state trajactories )(ˆ tx  and 

with the estimated parameters ̂ .   Then the EKF 

 
1)ˆ()ˆ(

ˆ)ˆ()()ˆ(ˆ)ˆ(ˆ





VxHPxK

xxHxyxKxxFx

f

f 


(4.148) 

WPxHVxHPuxFPPuxFtP   )ˆ()ˆ(),ˆ(),ˆ()( 1
0)0( PP  (4.149) 

is asymptotically stable in a semi-global region bounded in e , where   
 ˆˆˆ xx . 
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Proof   By Condition (c), the covariance solution P(t) over the interval is bounded above 

and below (as in the linear Kalman filter case), such that there exist scalar constants   

and  : 

etPe
e

)(sup 1

1





 for all 0t  

etPe
e

)(inf 1

1




 for all 0t  

which bound the function (4.143): 

 eetLee  )(0

 satisfying Condition (a) of Theorem 2-1.    In addition, the term WKKV   in equation 

(4.146) is positive definite per Riccati equation theory, and bounded from below, such 

that there exists a position scalar  : 

  etPWtKVtKtPe
e

)()()()(inf 11

1






Thus there will exist a finite region 

 e

 where the positive definite term dominates the cubic terms in (4.147), such that the 

positive scalar 

  eXePPXePWtKVtKPe
e

 1111

1
)()(inf 





 over all t >0 

exists.   Then 

0)(  eetL  for all   0t  

and Condition (b) of Theorem 2-1 is satisfied.   Consequently,  L(t) is a Lyapunov 

function in the region  e  and the EKF is therefore asymptotically stable in that

region.  
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The proof given above is valid if the assumed conditions are true.   A difficulty arises 

in that we are unable to verify the validity of Condition (c).   Although it is possible to 

assess the controllability and observability of the linear, augmented system given fixed, 

true parameters in the system A, B, and C matrices, we can only assume that this implies 

the observability and controllability of the augmented system along the estimated state 

and parameter trajectories.   A test to verify that Condition (c) holds given (a) and (b) 

does not, as of yet, exist and is a potential topic for future research. 

4.5.5.2 Stability of the New Filter:  For the same candidate Lyapunov function 

(4.143), with the “covariance” update equation of the new filter, one finds 

 

 

  ePWPxHVxPHuxPFPuxFPe

exHuxKuxFPe

ePuxKxHuxFe

ePPPeePeePetL

f

f

111

1

1

1111

)ˆ,ˆ()ˆ,ˆ(),ˆ,ˆ(),ˆ,ˆ(

),ˆ(),ˆ,ˆ(),,ˆ(

),ˆ,ˆ(),ˆ(),,ˆ(

)(



























This is simplified in the same manner as done previously: 

 

 

 

eWPPxHVxHe

exHuxKuxFPe

exHuxKuxFPe

ePuxKxHuxFe

ePuxKxHuxFetL

f

f

f

f





 












 



















111

1

1

1

1

)ˆ,ˆ()ˆ,ˆ(

)ˆ,ˆ(),ˆ,ˆ(),ˆ,ˆ(

),ˆ(),ˆ,ˆ(),,ˆ(

),ˆ,ˆ()ˆ,ˆ(),ˆ,ˆ(

),ˆ,ˆ(),ˆ(),,ˆ()(



















(4.150) 

Again individual terms are examined for cancellations. 
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






 









 








 


00

)ˆ()ˆ()(

00

)()ˆ()1()ˆ(

00

)()ˆ()(
),ˆ,ˆ(),,ˆ(

xREE

uQxREAuQxREA
uxFuxF




 

Similarly, 

   

 )ˆ()ˆ()(

)ˆ()1()ˆ()ˆ()()ˆ,ˆ(),ˆ(

xUDD

xUDCxUDCxHxH



 





We have been considering Case 1, with 0  , i.e. 











00

0)(
),ˆ,ˆ(),,ˆ(


 

E
uxFuxF

and 

 0)()ˆ,ˆ(),ˆ(   DxHxH 

Thus 

 
















 0)(),ˆ,ˆ(

00

0)(
),ˆ,ˆ,( 


 DuxK

E
uxS f (4.151) 

 and (4.144) can be expressed as: 

 eWPPxHVxHuxSPPuxSeL 11111 )ˆ,ˆ()ˆ,ˆ(),ˆ,ˆ,(),ˆ,ˆ,(   

 In this case, the matrix function S is not linear in e  as in the EKF, it is linear in   and 

can be represented 

 ),ˆ,ˆ(),ˆ,ˆ,( uxXuxS 

Thus, we have 

  eXPPXPWtKVtKPeL  1111 )()(  

 Thus the new filter appears to be less stable than the EKF, in that the indefinite terms are 

proportional to the parameter vector itself, rather than the parameter error vector.  
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)(E )(D

Nevertheless, the same indication of stability applies, in a region where the indefinite 

term is dominated by the positive definite term. 

4.5.5.3 Stability when all Unknown Parameters Multiply the Control Input 

Theorem 4-5   If the system (4.117)-(4.118) is such that only the input distribution 

matrix G() depends on the unknown parameter vector,  and  are both zero, 

and it is persistently excited such that the conditions for observability and controllability 

are met, then the new nonlinear filter, (4.129)-(4.130), is globally asymptotically stable. 

Proof   Since E() and D() are zero, S = 0 and (4.146) reduces to  

  ePWtKVtKPeL 11 )()(  

 which is semi-definite, positive for all e, given the assumed observability and 

controllability of the system.    Bounds on the candidate Lyapunov function and its time 

derivative can be shown to exist. Thus, by Lyapunov’s 2
nd

 theorem (Sec. 2.1.1, Theorem

2-1), the filter is globally asymptotically stable. 

This is not surprising because when both )(E  and )(D  are zero, the system class 

moves back into the more restricted System Class B, and for this class the new filter is 

equivalent to the standard full-order Kalman filter, which is guaranteed to be stable 

globally. 
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CHAPTER 5 

5 EXAMPLES    5 

5.1 Comparison of All Methods in a Simple Example 

The existing methods and the new methods reported herein are compared in this section 

by applying each to a simple 2
nd

 order linear, time-invariant, single-input, single-output

uncertain system: 

 2

1








ssu

y
( 5.1) 

When expressed in state variable form 

)(

)(

12

221

tux

tyxx













it is clear that this system falls into Class B.    The parameters 1 = 1 and 2 = 0.1 are both 

unknown .   At t = 30 seconds, 2 experiences a step change to 0.20. 

Existing methods that are applied are (1) the full-order Kalman filter, (2) the 

reduced-order Kalman filter of Section 3.2.1, (3) Narendra and Annaswamy’s method of 

Section 3.2.2, (4) Bastin and Gevers’ method of Section 3.2.3 and (5) Raghavan’s method 

of Section 3.2.4.   The new methods applied include (1) the Separate-bias Reduced-order 

Kalman filter of Section 4.1, and (2) the Nonlinear Observer 1 of Section 4.2.   Nonlinear 

Observer 2 of Section 4.3 was attempted, however, without success (see Section 5.1.8).   

Neither the new SDDRE filter nor the EKF were applied, because for this problem they 

are identical to the full-order Kalman filter.   In all cases a similar reasonable effort was 

applied to produce the filter.   In some, more time could have been spent adjusting filter 

gains to produce better performance; however, it was felt that an accurate comparison 
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should also consider the level of effort required to generate the filter.  The application of 

an (approximately) equal amount of time spent on each thus eliminates that variability. 

In all cases, simulations were run with zero initial conditions on the state, the state 

estimate, and the parameter estimates: 

0)0(ˆ)0(ˆ0)0()0( 2121  xxxx

0)0(ˆ)0(ˆ
21 

 although, the state estimate 1x̂  does not exist in some examples involving reduced-order 

observers.   In all cases the same persistently exciting control 

)2.02sin()5.02sin()( tttu  

was applied. 

5.1.1 Full-order Kalman Filter 

To apply the full-order Kalman filter, the state and parameter vectors are appended, 

creating the dynamic system:  



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

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


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 
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




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






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1
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1
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1
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1

2

1
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0)(00

)(010

w

w

w

w

x

x

tu

ty

x

x
















( 5.2) 

vxy  1

The white process and measurement noise processes, although assumed to be zero, are 

shown in these equations because of their association with the noise spectral density 

matrices W and V of the Kalman filter.   Both are chosen, or tuned, to produce the desired 

filter response. 

Results   The observer equations in this case are: 
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WCPVCPAPAPP  1

1 VCPK

)ˆ(ˆ)(ˆ zCyKztAz 

where  0001C .    The following initial state estimate covariance matrix P(0),

and noise density matrices: 

 100100100diagW   V = 0.1 





















1000

0100

0010

0001

)0(P

give the results shown in Figure 5.1. 
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Figure 5.1   Full-Order Kalman Filter 
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Remarks   As can be seen by the simplicity of the filtering equations, this observer is 

easy to implement and, like the Kalman filter for time invariant systems, intuitive. The 

computational load, on the other hand, is relatively high, involving a total of 14 coupled 

differential equations.  The parameter estimates converges fairly well, and the change in 

2 is detected.   Although the convergence in the estimate of 2x  is poor, presumably the 

response could be improved by better tuning of the design parameters in W and V. 

5.1.2 Reduced-Order Kalman Filter 

Observer Equations   The Reduced-order Kalman filter (see Eq. (5.2))  involves the 

submatrices: 

011 A  )(0112 tyA 



















0

0

0

21A



















000

000

0)(0

22

tu

A

and the following constant matrices: 

 00011 F










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






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0100

0010

2F
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




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








1000
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0010

0001

Q

where Q is the process noise spectral density matrix selected for this simulation. 

The observer equations updated in continuous time are given by: 

12

1

1222 *
~

AWQFFAA 

2212

1

12

~~~
FQFPAWAPAPPAP  

]00[12 yA  

1

1212 )(  WQFFAPK
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1

1212 )(  WAPAPK 

Kyxx  22
ˆ

 
yKxKAAz   21222

ˆ)(

where the initial conditions for z and P given by: 

  000)0(z


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
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
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





100

010

001

)0(P

2̂

The response with this filter is shown in Figure 5.2.

Remarks When compared to the full-order Kalman filter, computational loading in this 

example is lessened from 14 to 9 coupled equations.    Nevertheless, transient 

performance is very similar.  Convergence of  is poor, however, which in turn 

produced a hangoff error in 2x̂ .    Again, better tuning probably could help. 
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Figure 5.2   Reduced-Order Kalman Filter 
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5.1.3 Narendra and Annaswamy’s Observer 

For this example problem the Narendra and Annaswamy observer is: 

 ˆˆˆˆ
11

 xx , 0)0(ˆ
1 x

u 11
ˆ1.0ˆ  , 0)0(ˆ

1 

y 22
ˆ1.0ˆ  , 0)0(ˆ

2 

yye  ˆ

   

 ˆˆ  e


with  21
ˆˆˆ  yu .   I n the simulation results of Figure 5.3, the following 

parameters were employed: 
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Figure 5.3   Narendra and Annaswamy’s Adaptive Observer 
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Remarks.  The filter given above is 4
th

 order.   Thus, computational loading is

significantly less than both the full-order (14
th

 order) and reduced-order (9
th

 order)

Kalman filters. However, the performance of this filter is significantly different from the 

previous two.   The position estimation error does not contain a hangoff as did the 

previous two, which is good.   However, the transient swings are larger and the change in 

2 is not accurately estimated.   Also, 1 is not estimated very accurately.

5.1.4 Bastion and Gevers’ Observer 

The Bastion and Gevers method requires the system to be of the form 

)()( tgtRxx  

where R is a stable, constant Hurwitz matrix.   We convert ( 5.1), repeated here in state-

space form: 
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to the required form through the change in coordinates: 
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with c2 a positive constant.   The system dynamics in this coordinate system: 

y
c

c

ycu

y

z

z

cz

z


























 




























2
2

2

2

1

22

1

22

1 0

0

10









clearly has the form that is required. 

In accordance with the Bastion and Gevers’ observer definition as given in [3] and

in Section 3.2.3 the following observer equations are derived: 
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State Equations: 
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Auxiliary Equations: 
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 The simulation results shown below were run with 12121  cc .
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Figure 5.4   Bastion and Gevers’ Adaptive Observer 

Remarks  In this case computational loading is moderate; the observer is 6
th

 order.

Although transient swings are large like Narandra and Annaswamy’s observer, there is 

less ringing, and good convergence does eventually occur.   It appears to be better than all 

of the observers discussed thus far, and it appears to be fairly robust in that it accurately 

tracks the change in 2 that occurs at t = 30 seconds.   The change does cause, however,

excessive swings in all of the estimates. 

5.1.5 Raghavan’s Observer 

Raghavan’s adaptive observer is most easily expressed in matrix form, even for this 

simple example.   Thus, for this 2
nd

 order example, the observer equations are:

Velocity Estimate Error

Estimate of Theta_1 

Estimate of Theta_2 
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system matrices are given by the plant expressed in the necessary form: 
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The simulation results below were generated with 1.021  ll  and k = I2. 

Remarks   This observer is 8
th

 order.   Transient swings, shown in Figure 5.5, are large, 

but not as large as those produced by the Bastin and Gevers’ filter.   The convergence is 

strong, somewhat better than the other observers discussed thusfar.  The change in 2 is

accurately tracked. 

A (t) 

C 
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Figure 5.5   Raghavan’s Adaptive Observer 

5.1.6 Reduced-Order Separate-Bias Kalman Filter 

The Reduced-Order Separate-Bias Kalman filter of Section 3.2.1, when applied to system 

( 5.1), is expressed as follows: 

Bias-Free Filter: 
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Velocity Estimate Error 

Estimate of Theta_1

Estimate of Theta_2 
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with a process spectral density matrix of 
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the system performance is as shown in Figure 5.6.  

Remarks  This filter is 9
th

 order.   Very good convergence is achieved initially, however,

the change in 2 is not tracked very well.   Again, with additional tuning it would

probably be possible to improve tracking through a parameter change.  Presumably a 

system such as this would be well served by the addition of a failure detection 

mechanism. 

Separate-Bias Filter: 
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Figure 5.6   Reduced-Order Separate Bias Kalman Filter 

5.1.7 Nonlinear Observer 1  

The submatrices that are needed to construct this reduced-order filter are in this example: 

0222111  AAA 021  gg
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 ytE  0)(1  0)(2 utE 

Given these, the straightforward application of equations (4.63)-(4.67) yields: 
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   00)0(̂ ( 5.3) 
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In the last equation you will note the presence of , which should be eliminated if 

possible.   The elimination of  depends on the success one has in finding a vector 

function having the Jacobian

112 EAy
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 which in this example is    yy 21  where  21  .    It is easy to verify 

that one such vector function is the following: 
















 2

2

1

2

1),,(
yy

y

yut





Thus, given the above, it is possible to generate the other jacobians needed in  Equation 

(4.71) 
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which upon substitution into Equation (4.70) yields 
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 These two equations replace the parameter update equation  ( 5.3) given above. 

Remarks  This filter is of order 5, which is 3 less than Raghavan’s    In comparison, one 

state estimate and two elements from the   matrix differential equation are removed.

Performance appears to be much better than the full-order Raghavan observer in this test 

case, in that the large transients and long settling times have been significantly reduced.  

In addition, the step change in 2 is tracked well without causing large swings in the

other estimates. 
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Figure 5.7    Nonlinear Observer 1 

5.1.8 Nonlinear Observer 2  

Friedland’s observer when applied to this example yields error dynamics: 
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with K, L1 and L2 constants.   There is no choice of constants that can produce a 

symmetric matrix, thus (4.87) cannot be satisfied.   One could proceed with the 

application of this filter anyway, however there would be no guarantee of convergence. 

time(sec)
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5.1.9 Summary of Results and Discussion 

The key observations to be made about the various methods applied in this simple test 

example are summarized in Table 5.1.   In general, all of the methods converged, as they 

should since global asymptotic stability is, for this class of system, guaranteed by all of 

these methods.  Some, however, performed significantly better than others.   All of the 

Kalman filter based methods did a good job in estimating the initial parameter values, but 

did not do too well in tracking the change in 2 .   The Narandra-Annaswammy observer 

performed similarly, tracking the initial values well and the change in 2 poorly.   This

filter, however, has the added disadvantage of being somewhat more difficult to apply.   

Those filters that estimated the initial values correctly and tracked the change in 2 well

were the Bastion-Gevers filter, the Raghavan filter, and the Nonlinear Observer 1.   The 

advantage that the Nonlinear Observer 1 has over the others appears to be the much 

reduced transient swings that occur initially and after the step change in 2 .   In addition, 

it also has the lowest order of the three. 
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Table 5.1   Summary of Results, All Methods in a Simple Example 

Method Order Transients 

Tracking of 

2 Change

Ease of 

Application 

Existing Methods: 

Full-order Kalman Filter 14 good poor 2 

Reduced-order Kalman 

Filter 

9 good poor 2 

Narendra-Annaswammy 4 poor poor 3 

Bastion-Gevers 6 poor good 3 

Raghavan 8 better good 1 

New Methods: 

Separate-bias Reduced-

order Kalman filter 

9 good poor 2 

Nonlinear Observer 1 5 good good 1 

Nonlinear Observer 2 3 n/a n/a n/a 

Ease of Application Key: 1 – Easy, with little tuning required; 2 – Moderate, with some 

tuning required;  3 – Difficult, requiring a preliminary transformation to proper form 

5.2 Stepper Motor Example 

The new SDDRE nonlinear filtering technique developed in the previous chapter for 

systems bilinear in their unknown parameters and state variables (i.e. System Class C) 

and the Extended Kalman Filter (EKF), are applied in this section to a parameter 

estimation problem involving a 4
th

 order permanent magnet stepper motor with six (6)

unknown parameters. Through simulation experiments, we demonstrate that the 

performance of both are stable.   Not only do both filters generate convergent state and 

parameter estimates, but the results indicate that a region of convergence exists and that 
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region appears to be at least semi-global, as indicated by the theory.   Actually, a set of 

initial conditions leading to non-convergence could not be found.    

5.2.1 Model 

In [4] Blauch, et. al. demonstrate the use of a batch least-squares estimation algorithm in

the identification of the parameters of a permanent magnet stepper motor.   The motor  

model: 
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is nonlinear, 4
th

order, and contains six (6) unknown parameters and two (2) inputs, all of 

which are defined in Table 5.2 and Table 5.3.   In addition, there is a known parameter 

involved, N, which is related to the motor step size.   As noted, the model is clearly 

nonlinear.   Equations  ( 5.4) and ( 5.5) contain the multiplication of two state variables, 

)(t  and a current, and in equation ( 5.6) there is coulomb friction.   There also exists the 

nonlinearity introduced by the multiplication of an unknown parameter with an 

unmeasured state variable (i.e. System Class C);  we will be considering the case in 

which the viscous friction coefficient B is unknown. 
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Table 5.2 – State Variable and Input Definitions 

Variable Description Units 

iq, id Quadrature and Direct Currents Amps 

 Angular Velocity rad/sec 

 Angular Position rad 

q, d Input voltages Volts 

Table 5.3  - System Parameter Definitions 

Variable Description Units 

R Motor Winding Resistance  

L Inductance H 

Km Torque Constant N-m/A

J Inertia N-m-s
2

B Viscous Friction Coefficient N-m-s

C Coulomb Friction Coefficient N-m

The measurements that will be assumed in this case study will include both phase 

currents, iq and id, and the motor shaft position .   This is typical in motion control 

applications involving stepper motors. 

All of the parameters listed in Table 5.3 can have some degree of uncertainty.   The 

inertia constant J can vary as the load being driven by the motor varies.   In addition, 

motor viscous friction B is also typically very poorly known, more so than the motor 

resistance R, inductance L, and torque constant Km.   All can vary somewhat  with 

temperature and/or time, and so all five (5) of these parameters are assumed to be 

unknown and requiring estimation.   The coulomb friction coefficient C, on the other 
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hand, multiplies the hard nonlinearity, sgn((t)).   It therefore must be considered a 

known if we are to satisfy the restriction of System Class C.     

The following definitions: 
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B mm 1
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 allow the system model (5.1)-(5.4) to be expressed in the more compact form: 
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The state variables (5.5) are arranged in this order so that the first three are measured, 
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and the remaining one is not.   

Actual parameter values are listed in Table 5.4.  These give rise to the following 

true parameter values: 
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Table 5.4 – Stepper Motor Parameter Values 

R Motor Winding Resistance 0.65  

L Inductance 0.0028 H 

Km Torque Constant 0.51 N-m/A 

J Inertia 0.000178 N-m-s
2

B Viscous Friction Coefficient 0.0008 N-m-s 

C Coulomb Friction Coefficient 0.011 N-m 

5.2.2 Filter Equations 

Both the SDDRE filter and the EKF simulation tested with this example depend on the 

system matrices A(t), E(), R(), and Q(u), which in this application are: 
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These define the State Dependent Coefficient  (SDC) representation for the augmented 

system : 
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Thus, the matrix in (5.9) is )(zF . In the simulations that follow, a value of 5.0  was

used.    The observation matrix  H ( z)  is given by 

H(z)  I3 07x7 

 In the EKF, the needed jacobians F  and H  are constructed in a similar fashion using the 

matrices A(t), E(), R(), and Q(u), and will not be shown here.  The observation 

Jacobian, HH  . 

5.2.3 Simulation Conditions 

The initial conditions for applied in this simulation experiment were the following: 

10100)0( xP  140)0( xx  140)0(ˆ xx 

665544

3321

5.0)0()0(2)0(ˆ

9.0)0(ˆ0)0(ˆ0)0(ˆ









A persistently exciting control action applied was in both examples: 

)04.0/2(sin(*28

0

tsignq

d









where the direct voltage is 0 and the quadrature voltage is a 28 volt, 25 Hz square wave.   

The filter design matrices: 

3

8 )111100010011111(10

IV

diagW





were selected by trial and error after examining a few transient simulations.   In all cases 

both filters were stable, however their speed of response required adjustment.    
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In the first simulation example, the coulomb friction coefficient C is set to a known 

value, zero.   The system is then bilinear in the remaining coefficient and state variables, 

thereby satisfying the constraints of System Class C, to which the proof of stability 

applies.   The results of the first simulation, which involved perfect knowledge of the 

coulomb friction coefficient, are shown in Figure 5.8 through Figure 5.12 below.  The 

oscillations that occur in all of these results are caused by the 25 Hz drive voltage 

excitation applied to the motor.   The 50 Hz oscillation that appears in the parameter 

estimates is caused by the rectification that occurs due to the modulation of the filter 

gains at 25 Hz.  

Figure 5.8  Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Known to be Zero 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

0

2

4

6

8
Theta

1
; Beta/J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

40

60

Theta
2
; C/J

time (sec)



132 

Figure 5.9  Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Known to be Zero 

Figure 5.10 Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Known to be Zero 
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Figure 5.11  State Estimates, Stepper Motor, SDDRE (solid blue), EKF (dotted 
green), Coulomb Friction Known to be Zero 

Figure 5.12   State Estimates, Stepper Motor, SDDRE (solid blue), EKF (dotted 
green), Coulomb Friction Known to be Zero 
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In all plots, the SDDRE filter result is plotted as a solid line and the EKF result as a 

dotted line.   The true parameters are shown as dashed lines.  Clearly, the filter estimates 

all converge nicely to their true values after a short transient.   This occurs even though 

the initial parameter errors were in some cases very large.   In fact, as noted, a set of 

initial conditions yielding unstable performance could not be found, indicating that the 

region of convergence is apparently large.   The difference between the estimates 

provided by the EKF and SDDRE filter is only apparent in the parameter estimates.   The 

states estimates are virtually identical and indistinguishable on the plots. 

In the next simulation test, the viscous damping is assumed to be zero and known, 

and the coulomb friction C is an unknown that is estimated by the filter.   These results 

are given in Figure 5.13 through Figure 5.17.  You will note that both filters again do a 

excellent job in estimating the unknown states and parameters.   Like the first test, initial 

conditions leading to instability could not be found. 

Finally, in a third example both C and B were assumed to be unknown, and in this 

case the filter is found to be stable but not asymptotically stable.   The filter estimates did 

not converge to their true values.   This is as expected because only the sum of the two 

parameters multiplying the velocity state is observable. 

The non-Riccati equation based techniques developed herein were not tried on this 

problem because they do not readily handle applications that fall into System Class C. 
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Figure 5.13  Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Unknown, Viscous Damping Zero 

Figure 5.14  Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Unknown, Viscous Damping Zero 
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Figure 5.15   Parameter Estimates, Stepper Motor, SDDRE (solid green), EKF 

(dotted red), Coulomb Friction Unknown, Viscous Damping Zero 

Figure 5.16  State Estimates, Stepper Motor, SDDRE (solid blue), EKF (dotted 
green), Coulomb Friction Unknown, Viscous Damping Zero 
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Figure 5.17 State Estimates, Stepper Example Stepper Motor, SDDRE (solidblue), 

EKF (dotted red), Damping Zero  
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CHAPTER 6 

6 CONCLUSIONS AND RECOMMENDED FUTURE WORK   6     

Five new methods were developed for the simultaneous, on-line estimation of the 

unmeasured state variables and unknown parameters in linear and nonlinear dynamic 

systems of known structure.   Two fundamentally distinct groups were defined:  those 

that do not involve Riccati equations, and those that do.   Two methods were developed 

that do not, and both are considered to be extensions of Friedland’s parameter observer 

from full to partial state availability.   The first, referred to herein as Nonlinear Observer 

1, is a reduced-order variant of Raghavan’s adaptive observer.   The method is globally 

stable for systems affine in the unknown parameters and involving nonlinear functions of 

known quantities.   The second, called Nonlinear Observer 2, is a new state and 

parameter observer obtained by the direct extension of Friedland’s parameter observer to 

the case of partial state availability.   It also is globally stable for the same system class 

noted above, with an added restriction that the A12 and A22 submatrices be time invariant.   

In the category of methods that do involve Riccati equations, three methods were 

developed:  (1) the Separate-bias Reduced-order Kalman filter, (2) the State Dependent 

Algebraic Riccati Equations (SDARE) filter applied to the joint state and parameter 

estimation problem, and (3) the State Dependent Differential Riccati Equation (SDDRE) 

filter, proposed herein as a general filtering method and also applied to this joint 

estimation problem.   The global stability of the Separate-bias Reduced-order Kalman 

filter is assured for systems affine in the unknown parameters and involving nonlinear 

function of known quantities.   The stability of the SDDRE filter when applied to systems 

bilinear in the unknown parameters and estimated state was examined; however, the 
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results were inconclusive.   The semi-global stability of the Extended Kalman filter for 

this same system class was proven, given mild assumptions regarding system 

observability and controllability along estimated trajectories. 

Nonlinear Observer 1, created by combining the approach developed by Raghavan 

with the nonlinear reduced-order filtering ideas developed by Friedland, appears to 

outperform all others in the simple example provided in Chapter 5.   Transients swings 

were comparatively small, and the step change in one parameter was accurately tracked.   

In addition, computational demands were moderate.   Compared to the Narandra-

Annaswamy and Bastion-Gevers observers, it is of comparable order and computational 

loading, but it provides significantly better tracking of the parameters and states. 

Nonlinear Observer 2, created by directly extending Friedland’s parameter 

observation method to the case of partial state availability, was shown to be the least 

demanding computationally of all methods available, new and previously existing, the 

order equaling the number of estimated states and parameters.   When computational time 

loading is the primary concern, Nonlinear Observer 2 is clearly the best choice.   Its 

applicability, however, depends on the structure of the system and on the success a user 

has in finding suitable nonlinear functions, which can be difficult.   If this method cannot 

be applied, the next best choice computationally is Nonlinear Observer 1, which can 

always be applied successfully to systems that fall into Class B (affine in parameters 

multiplying nonlinearities depending on known quantities). Finally, if the system is 

stochastic and optimal performance is desired, and the additional computational burden 

can be tolerated, the Separate-bias Reduced-order Kalman filter can be applied. 
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The Separate-bias Reduced-order Kalman Filter is the optimal filter in separate-

bias form for estimation of the state and biases in linear systems involving measurements 

that are noise-free.  Although applicable to the problem considered herein, the estimation 

of the state and parameters in deterministic systems, its applicability is somewhat broader 

in that it can be used to provide an optimal estimate in stochastic systems having known 

process noise statistics. 

The predecessor of the present method, the full-order Separate-bias Kalman filter, 

has over the last 30 years received considerable use due to its inherent numerical stability 

and efficiency, and because many physical systems naturally take the separate-bias form.   

Prior to the development of the reduced-order form of the Separate-bias Kalman filter, 

only the full-order form was available even for applications involving measurements 

having insignificant levels of noise.  In those applications, the computational savings of 

the reduced-order form can now be realized without loss of the inherent numerical 

stability and efficiency inherent in the separate-bias structure.   Numerical stability, 

efficiency, and the computational savings of the reduced-order form could be important, 

for example, in embedded applications involving limited processing capability.     

With regard to future work, two recommendations are made.   In some applications 

only part of the measurement vector is noise-free.   A useful future result would therefore 

be the optimal separate-bias filter that applies when part of the measurement vector is 

noise-free and part contains noise.   Also, to make the method more easily applied using 

digital hardware, the discrete-time form of this same filter could be derived. 

When the application involves a system that exceeds the limitations of System Class 

B and falls into System Class C (bilinear in unknown parameters and estimated states), 
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two methods can apply, an existing method called the SDARE Filter and a new method 

called the SDDRE Filter.  Both are general filtering algorithms applicable to general 

nonlinear system estimation problems, the difference being that the SDARE filter uses a 

frozen, algebraic Riccati equation and the SDDRE uses a complete Riccati equation, 

including the time derivative term.  Both were applied herein to the state and estimation 

problem. 

The SDARE filter was found to work quite well in several examples of lower order 

(i.e. two unknown parameters and two states).   However, as the number of parameters 

increases beyond two, the method becomes difficult to apply due to an apparent lack of 

“observability” within the filter.    It becomes necessary to distinguish each new 

parameter from the previous by altering their dynamics as seen by the filter, so that they 

become observable in the linear sense, such that the algebraic Riccati equation has a 

solution.  This is a suitable approach for a few parameters, but as the number grows, 

numerical difficulties tend to result. 

The observability problems of the SDARE filter prompted the development of  the 

SDDRE filter.   By using a complete Riccati equation, the need for “linear” observability 

is eliminated.   It is replace by the requirement that the system be observable over a time 

interval rather than at every instant, which is a much easier condition to achieve.   The 

SDDRE is therefore recommended over the SDARE filter, because it avoids these 

potential “linear” observability problems that preclude filter operation even when the 

system is observable.   In addition, it is recommended because the computational 

demands associated with the generation of the Riccati solution are greatly reduced.   It is 
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much easier to propagate one step forward in time the solution to a set of differential 

equations than it is to solve a similarly dimensioned algebraic Riccati equation.   

The new SDDRE filter was shown to be similar to the Extended Kalman Filter in 

structure, particularly for systems bilinear in the state and parameters.   An assessment of 

the stability of both filters was performed using Lyapunov theory.   A semi-global (finite) 

region of stability has been shown to exist for the EKF applied to bilinear systems.  The 

system states and parameters must be observable.   The observablility of the system along 

the true state trajectory and with the true parameters, is assumed to affirm of the 

observablility of the system along the estimated state and parameter trajectory.     

Ljung examined the stability of the EKF when used as a parameter estimator in 

linear systems and found no guarantee of convergence under any condition.   The results 

of this present work indicate that when used as a parameter estimator in a linear system, 

the EKF will produce convergent state and parameter estimates providing that the 

augmented system is controllable and observable along true trajectories, and the initial 

parameter estimation errors are small. 

Both the new SDDRE filter and the EKF were simulation tested on a 4
th

 order 

stepper motor with 5 unknown parameters.   The new filter was found to provide similar 

and potentially better transient performance than the EKF, which is somewhat surprising 

when noting that the theory developed herein indicates that the EKF is stable, and is 

inconclusive with regard to the SDDRE filter.   Perhaps the new SDDRE filter can be 

shown in future studies to have similar or superior stability characteristics over the EKF, 

as the simulation results suggest.   The stability of the SDDRE filter when applied to 

bilinear systems is an area of potentially fruitful future investigation.    
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